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Abstract

We aim to understand, formalize and provably achieve the goals underlying the core key-

ratcheting technique of Borisov, Goldberg and Brewer, extensions of which are now used in

secure messaging systems. We give syntax and security definitions for ratcheted encryption

and key-exchange. We give a proven-secure protocol for ratcheted key exchange. We then

show how to generically obtain ratcheted encryption from ratcheted key-exchange and standard

encryption.
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1 Introduction

The classical view of cryptography was that the endpoints (Alice and Bob) are secure and the

adversary is on the communication channel. The prevalence of malware and system vulnerabilities

however makes endpoint compromise a serious and immediate threat. In their highly influential

OTR (Off the Record) communication system, Borisov, Goldberg and Brewer (BGB) [9] attempt to

mitigate the damage from endpoint compromise by regularly updating (ratcheting) the encryption

key. (They do not call it ratcheting, this term originating later with Langley [18].) Ratcheting

was then used by Open Whisper Systems in their Signal protocol [21], which in turn is used by

WhatsApp and other secure messaging systems.

This widespread usage —WhatsApp alone reports handling 42 billion text messages per day—

motivates an understanding and analysis of ratcheting: what is it aiming to accomplish, and does

it succeed? The answer to this question does not seem clear. Indeed, in their SOK (Systemiza-

tion of Knowledge) paper on secure messaging, UDBFPGS [24] survey many of the systems that

existed at the time and attempt to classify them in terms of security, noting that security claims

about ratcheting in different places include “forward-secrecy,” “backward-secrecy,” “self-healing”

and “future secrecy,” and concluding that “The terms are controversial and vague in the literature”

[24, Section 2.D].

In this paper, we aim to formalize the goals that ratcheting appears to be targeting. We give

definitions for ratcheted encryption and ratcheted key-exchange. We then give protocols (based on

ones in use but not identical to them) to provably achieve the goals.

Our work aims to be selective rather than comprehensive. Our intent is to formalize and

understand the simplest form of ratcheting that captures the essence of the goal, which is single,

one-sided ratcheting. This (as we will see) is already complex enough. Extended forms of ratcheting

are left as future work.

Ratcheting. The setting we consider is that sender Alice and receiver Bob hold keys Ks = (k, . . .)

and Kr = (k, . . .), respectively, k representing a shared symmetric key and the ellipses indicating

there may be more key information that may be party dependent. In practice, these keys are the

result of a session-key exchange protocol that is authenticated either via the parties’ certificates

(TLS) or out-of-band (secure messaging), but ratcheting is about how these keys are used and

updated, not about how they are obtained, and so we will not be concerned with the distribution

method, instead viewing the initial keys as created and distributed by a trusted process.

In TLS, all data is secured under the shared key k with an authenticated encryption scheme.

Under ratcheting, the key is constantly changing. As per BGB [9] it works roughly like this:

B → A: gb1 ; A→ B: ga1 , E(k1,M1) ; B → A: gb2 , E(k2,M2) ; . . . (1)

Here ai and bi are random exponents picked by A and B respectively; k1 = H(k, gb1a1), k2 =

H(k1, g
a1b2), . . .; H is a hash function; E is an encryption function taking key and message to return

a ciphertext; and g is the generator of an underlying group. Each party deletes its exponents and

keys once they are no longer needed for encryption or decryption.

Contributions. This paper aims to lift ratcheting from a technique to a cryptographic primitive,

with a precise syntax and formally-defined security goals. Once this is done, we specify and prove

secure some protocols that are closely related to the in-use ones.

If ratcheting is to be a primitive, a syntax is the first requirement. As employed, the ratcheting

technique is used within a larger protocol, and one has to ask what it might mean in isolation. To
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allow a modular treatment, we decouple the creation of keys from their use, defining two primitives,

ratcheted key exchange and ratcheted encryption. For each, we give a syntax. While ratcheting

in apps is typically per message, our model is general and flexible, allowing the sender to ratchet

the key at any time and encrypt as many messages as it likes under a given key before ratcheting

again.

Next we give formal, game-based definitions of security for both ratcheted key exchange and

ratcheted encryption. At the highest level, the requirement is that compromise (exposure in our

model) revealing a party’s current key and state should have only a local and temporary effect

on security: a small hiccup, not compromising prior communications and after whose passage

both privacy and integrity are somehow restored. This covers forward security (prior keys or

communications remain secure) and backward security (future keys and communications remain

secure). Amongst the issues in formalizing this is that following exposure there is some (necessary)

time lag before security is regained, and that privacy and integrity are related. For ratcheted key

exchange, un-exposed keys are required to be indistinguishable from random in the spirit of [5]

—rather than merely, say, hard to recover— to allow them to be later securely used. For ratcheted

encryption, the requirement is in the spirit of nonce-based authenticated encryption [22], so that

authenticity in particular is provided.

The definitions are chosen to allow a modular approach to constructions. We exemplify by

showing how to build ratcheted encryption generically from ratcheted key-exchange and multi-

user-secure nonce-based encryption [7]. This allows us to focus on ratcheted key exchange.

We give a protocol for ratcheted key exchange that is based on DH key exchanges. The core

technique is the same as in [9] and the in-use protocols, but there are small but important differences,

including MAC-based authentication of the key-update values and the way keys are derived. We

prove that our protocol meets our definition of ratcheted key exchange under the SCDH (Strong

Computational Diffie-Hellman) assumption [1] in the random oracle model (ROM) [4]. The proof

is obtained in two steps. The first is a standard-model reduction to an assumption we call ODHE

(Oracle Diffie-Hellman with Exposures). The second is a validation of ODHE under SCDH in the

ROM.

Model and syntax. Our syntax specifies a scheme RKE for ratcheted key exchange via three algo-

rithms: initial key generation RKE.IKg, sender key generation RKE.SKg and receiver key generation

RKE.RKg. See Fig. 3 for an illustration. The parties maintain output keys (representing the keys

they are producing for an overlying application like ratcheted encryption) and session keys (local

state for their internal use). At any time, the sender A can run RKE.SKg on its current keys to get

update information upd that it sends to the receiver, as well as updated keys for itself. The receiver

B correspondingly will run RKE.RKg on received update information and its current keys to get

updated keys, transmitting nothing. RKE.IKg provides initial keys for the parties, what we called

Ks and Kr above, that in particular contain an initial output key k (the same for both parties) and

initial session keys. A ratcheted encryption scheme RE maintains the same three key-generation

algorithms, now denoted RE.IKg, RE.SKg and RE.RKg, and adds an encryption algorithm RE.Enc

for the sender —in the nonce-based vein [22], taking a key, nonce, message and header to determin-

istically return a ciphertext— and a corresponding decryption algorithm RE.Dec for the receiver.

The key for encryption and decryption is what ratcheted key exchange referred to as the output

key.

Besides a natural correctness requirement, we have a robustness requirement: if the receiver

receives an update that it rejects, it maintains its state and will still accept a subsequent correct
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update. This prevents a denial-of-service attack in which a single incorrect update sent to the

receiver results in all future communications being rejected.

Security. In the spirit of BR [5] we give the adversary complete control of communication. Our

definition of security for ratcheted key exchange in Section 4.2 is via a game KIND. After (trusted)

initial key-generation, the game gives the adversary oracles to invoke either sender or receiver key

generation and also to expose sender keys (both output and session). Roughly the requirement

is that un-exposed keys be indistinguishable from random. The delicate issue is that this is true

only under some conditions. Thus, exposure in one session will compromise the next session. Also,

a post-expose active attack on the receiver (in which the adversary supplies the update informa-

tion) can result in continued violation of integrity. Our game makes the necessary restrictions to

capture these and other situations. For ratcheted encryption, the game RAE we give in Section 5

captures ratcheted authenticated encryption with nonce-based security. The additional oracles for

the adversary are encryption and decryption. The requirement is that, for un-exposed and properly

restricted keys, the adversary cannot distinguish whether its encryption and decryption oracles are

real, or return random ciphertexts and ⊥ respectively.

Schemes. Our ratcheted key exchange scheme in Section 4.3 is simple and efficient and uses the

same basic DH technique as ratcheting in OTR [9] or WhatsApp, but analysis is quite involved.

The sender’s initial key includes gb where b is part of the receiver’s initial key, these quantities

remaining static. Sender key generation algorithm RKE.SKg picks a random a and sends the update

upd consisting of ga together with a mac under the prior session key that is crucial to security.

The output and next session key are derived via a hash function applied to gab. Theorem 4.1

establishes that the scheme meets our stringent notion of security for ratcheted key exchange. The

proof uses a game sequence that includes a hybrid argument to reduce the security of the ratcheted

key exchange to our ODHE (Oracle Diffie-Hellman with Exposures) assumption. The latter is an

extension of the ODH assumption of [1] and, like the latter, can be validated in the ROM under

the SCDH assumption of [1] (which in turn is a variant of the Gap-DH assumption of [20]). We

show this in Appendix A. Ultimately, this yields a proof of security for our ratcheted key exchange

protocol under the SCDH assumption in the ROM.

Our construction of a ratcheted encryption scheme in Section 5 is a generic combination of any

ratcheted key exchange scheme (meeting our definition of security) and any nonce-based authen-

ticated encryption scheme. Theorem 5.1 establishes that the scheme meets our notion of security

for ratcheted encryption. The analysis is facilitated by assuming multi-user security for the base

nonce-based encryption scheme as defined in [7], but a hybrid argument reduces this to the standard

single-user security defined in [22]. Encryption schemes meeting this notion are readily available.

Setting and discussion. There are many variants of ratcheting. What we treat is one-sided ratcheting.

This means one party (Alice) is a sender and the other (Bob) a receiver, rather than both playing

both roles. In our model, compromises (exposures) are allowed only on the sender, not on the

receiver. In particular the receiver has a static secret key whose compromise will immediately

violate privacy of our schemes, regardless of updates. From the application perspective, our model

and schemes are suitable for settings where the sender (for example a smartphone) is vulnerable to

compromise but the receiver (for example a server with hardware-protected storage) can keep keys

safely. In two-sided ratcheting, both the sender and the receiver may be compromised. Another

dimension is single (what we treat) versus double ratcheting. In the latter, keys are also locally

ratcheted via a forward-secure pseudorandom generator [8]. Conceptually, we decided to focus on
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the single, one-sided case to keep definitions (already quite complex) as simple as possible while

capturing the essence of the goal and method. But we note that what Signal implements, and what

is thus actually used, is double, two-sided ratcheting. Treating this does not seem like a simple

extension of what we do and is left as future work.

Secure Internet communication protocols (both TLS and messaging) start with a session-key

exchange that provides session keys, Ks for the sender and Kr for the receiver. These are our

initial keys, the starting points for ratcheting. These keys are not to be confused with higher-level,

long-lived signing or other keys that are certified either explicitly (TLS) or out-of-band (messaging)

and used for authentication in the session-key exchange.

Messaging sessions tend to be longer lived than typical TLS sessions, with conversations that

are on-going for months. This is part of why messaging security seeks, via ratcheting, fine-grained

forward and backward security. Still, exactly what threat ratcheting prevents in practice needs

careful consideration. If the threat is malware on a communicant’s phone that can directly exfiltrate

text of conversations, ratcheting will not help. Ratcheting will be of more help when users delete

old messages, when the malware is exfiltrating keys rather than text, and when its presence on the

phone is limited through software security.

Related work. In concurrent and independent work, Cohn-Gordon, Cremers, Dowling, Garratt and

Stebila (CCDGS) [10] give a formal analysis of the Signal protocol. The protocol they analyze

includes ratcheting steps but stops at key distribution: unlike us, they do not consider, define or

achieve ratcheted encryption. They treat Signal as a multi-stage session-key exchange protocol [17]

in the tradition of authenticated session-key exchange [5, 3], with multiple parties and sessions.

We instead consider ratcheted key exchange as a two-party protocol based on a trusted initial key

distribution. This isolates ratcheted key exchange from the session key exchange used to produce

the initial keys and allows a more modular treatment. They prove security (like us, in the ROM)

under the Gap-DH [20] assumption while we prove it under the weaker SCDH [1] assumption.

Ultimately their work and ours have somewhat different goals. Theirs is to analyze the particular

Signal protocol. Ours is to isolate the core ratcheting method (as one of the more novel elements

of the protocol) and formalize primitives reflecting its goals in the simplest possible way.

Cohn-Gordon, Cremers and Garratt (CCG) [11] study and compare different kinds of post-

compromise security in contexts including authenticated key exchange. They mention ratcheting

as a technique for maintaining security in the face of compromise.

Key-insulated cryptography [12, 13, 14] also targets forward and backward security but in a

model where there is a trusted helper and an assumed-secure channel from helper to user that is

employed to update keys. Implementing the secure channel is problematic due to the exposures [2].

Ratcheting in contrast works in a model where all communication is under adversary control.

2 Preliminaries

Notation and conventions. Let N = {0, 1, 2, . . .} be the set of non-negative integers. Let ε denote

the empty string. If x ∈ {0, 1}∗ is a string then |x| denotes its length, x[i] denotes its i-th bit,

and x[i..j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. If mem is a table, we use mem[p] to denote the

element of the table that is indexed by p. By x ∥ y we denote a uniquely decodable concatenation

of strings x and y (if lengths of x and y are fixed then x ∥ y can be implemented using standard

string concatenation). If X is a finite set, we let x←$ X denote picking an element of X uniformly
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Game SUFCMAF
F

fk←$ {0, 1}F.kl
win← false
FTag,Verify

Return win

Tag(m)

σ ← F.Ev(fk,m)

S ← S ∪ {(m,σ)}
Return σ

Verify(m,σ)

σ′ ← F.Ev(fk,m)

If (σ = σ′) and ((m,σ) ̸∈ S) then

win← true
Return (σ = σ′)

Game MAEN
SE

b← {0, 1} ; v ← 0

b′←$NNew,Enc,Dec ; Return (b′ = b)

New

v ← v + 1 ; sk[v]←$ {0, 1}SE.kl

Enc(i, n,m, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n) ∈ U then return ⊥
c1 ← SE.Enc(sk[i], n,m, h) ; c0←$ {0, 1}SE.cl(|m|)

U ← U ∪ {(i, n)} ; S ← S ∪ {(i, n, cb, h)}
Return cb

Dec(i, n, c, h)

If not (1 ≤ i ≤ v) then return ⊥
If (i, n, c, h) ∈ S then return ⊥
m← SE.Dec(sk[i], n, c, h)
If b = 1 then return m else return ⊥

Figure 1: Games defining strong unforgeability of function family F under chosen message attack,
and multi-user authenticated encryption security of SE.

at random and assigning it to x. We use a special symbol ⊥ to denote an empty table position,

and we also return it as an error code indicating an invalid input; we assume that adversaries never

pass ⊥ as input to their oracles.

Algorithms may be randomized unless otherwise indicated. Running time is worst case. If A is

an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and

assigning the output to y. We let y←$ A(x1, . . .) be the result of picking r at random and letting

y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when invoked with

inputs x1, . . .. Adversaries are algorithms.

We use the code based game playing framework of [6]. (See Fig. 1 for an example.) We let

Pr[G] denote the probability that game G returns true. In code, uninitialized integers are assumed

to be initialized to 0, Booleans to false, strings to the empty string, sets to the empty set, and

tables are initially empty.

Function families. A family of functions F specifies a deterministic algorithm F.Ev. Associated to F

is a key length F.kl ∈ N, an input set F.In, and an output length F.ol. Evaluation algorithm F.Ev

takes fk ∈ {0, 1}F.kl and an input x ∈ F.In to return an output y ∈ {0, 1}F.ol.

Strong unforgeability under chosen message attack. Consider game SUFCMA of Fig. 1, associated to

a function family F and an adversary F . In order to win the game, adversary F has to produce

a valid tag σforge for any message mforge, satisfying the following requirement. The requirement is

that F did not previously receive σforge as a result of calling its Tag oracle with mforge as input. The

advantage of F in breaking the SUFCMA security of F is defined as Advsufcma
F,F = Pr[SUFCMAF

F ].

If no adversaries can achieve a high advantage in breaking the SUFCMA security of F while using

only bounded resources, we refer to F as a MAC algorithm and we refer to its key fk as a MAC

key.

Symmetric encryption schemes. A symmetric encryption scheme SE specifies deterministic algo-
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rithms SE.Enc and SE.Dec. Associated to SE is a key length SE.kl ∈ N, a nonce space SE.NS,

and a ciphertext length function SE.cl : N→ N. Encryption algorithm SE.Enc takes sk ∈ {0, 1}SE.kl,
a nonce n ∈ SE.NS, a message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext

c ∈ {0, 1}SE.cl(|m|). Decryption algorithm SE.Dec takes sk, n, c, h to return message m ∈ {0, 1}∗ ∪
{⊥}, where ⊥ denotes incorrect decryption. Decryption correctness requires that SE.Dec(sk, n,

SE.Enc(sk, n,m, h), h) = m for all sk ∈ {0, 1}SE.kl, all n ∈ SE.NS, allm ∈ {0, 1}∗, and all h ∈ {0, 1}∗.
Nonce-based symmetric encryption was introduced in [23], whereas [22] also considers it in the set-

ting with associated data. In this work we consider only nonce-based symmetric encryption schemes

with associated data; we omit repeating these qualifiers throughout the text, instead referring simply

to “symmetric encryption schemes”.

Multi-user authenticated encryption. Consider game MAE of Fig. 1, associated to a symmetric en-

cryption scheme SE and an adversary N . It extends the definition of authenticated encryption with

associated data for nonce-based schemes [22] to the multi-user setting, first formalized in [7]. The

adversary is given access to oracles New,Enc and Dec. It can increase the number of users by

calling oracle New, which generates a new (secret) user key. For any of the user keys, the adversary

can request encryptions of plaintext messages by calling oracle Enc and decryptions of ciphertexts

by calling oracle Dec. In the real world (when b = 1), oracles Enc and Dec provide correct

encryptions and decryptions. In the random world (when b = 0), oracle Enc returns uniformly

random ciphertexts and oracle Dec returns the incorrect decryption symbol ⊥. The goal of the

adversary is to distinguish between these two cases. In order to avoid trivial attacks, N is not

allowed to call Dec with ciphertexts that were returned by Enc. Likewise, we allow N to call Enc

only once for every unique user-nonce pair (i, n). This can be strengthened to allow queries with

repeated (i, n) and instead not allow queries with repeated (i, n,m, h), but the stronger requirement

is satisfied by fewer schemes. The advantage of N in breaking the MAE security of SE is defined

as Advmae
SE,N = 2Pr[MAEN

SE]− 1.

3 Oracle Diffie-Hellman with Exposures

The Oracle Diffie-Hellman (ODH) assumption [1] in a cyclic group requires that it is hard to

distinguish between a random string and a hash function H applied to gxy, even given gx, gy and

an access to an oracle that returns H(Xy) for arbitrary X (excluding X = gx). We extend this

assumption for multiple queries, based on a fixed gy and arbitrarily many gx[0], gx[1], . . .. For each

index v we allow either to expose x[v], or to get a challenge value; the challenge value is either a

random string, or H applied to gx[v]·y. We also extend the hash function oracle to take a broader

class of inputs.

Oracle Diffie-Hellman with Exposures assumption. Let G be a cyclic group of order p ∈ N, and let G∗

denote the set of its generators. Let H be a function family such that H.In = {0, 1}∗. Consider game

ODHE of Fig. 2 associated to G,H and an adversaryO, whereO is required to call oracleUp at least

once prior to making any oracle queries to Ch and Exp. The game starts by sampling a function key

hk, a group generator g and a secret exponent y. The adversary is given hk, g, gy and it has access

to oracles Up, Ch, Exp, Hash. Oracle Up generates a new challenge exponent x[v] and returns

gx[v], where v is an integer counter that denotes the number of the current challenge exponent

(indexed from 0) and is incremented by 1 at the start of every call to oracle Up. Oracle Hash takes

an arbitrary integer i, an arbitrary string s and a group element X to return H.Ev(hk, i ∥ s ∥Xy).
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Game ODHEO
G,H

b←$ {0, 1} ; hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; v ← −1
b′←$OUp,Ch,Exp,Hash(hk, g, gy) ; Return (b′ = b)

Up

op← ε ; v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v, s, gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch ← Sch ∪ {(v, s, gx[v])} ; e← gx[v]·y

If mem[v, s, e] =⊥ then mem[v, s, e]←$ {0, 1}H.ol

r1 ← H.Ev(hk, v ∥ s ∥ e) ; r0 ← mem[v, s, e] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s,X)}
Return H.Ev(hk, i ∥ s ∥Xy)

Figure 2: Game defining Oracle Diffie-Hellman with Exposures assumption for G,H.

For each counter value v, the adversary can choose to either call oracle Exp to get the value of

x[v] or call oracle Ch with input s to get a challenge value that is generated as follows. In the real

world (when b = 1) oracle Ch returns H.Ev(hk, v ∥ s ∥ gx[v]·y) and in the random world (when b = 0)

it returns a uniformly random element from {0, 1}H.ol. The goal of the adversary is to distinguish

between these two cases. Oracle Ch can be called multiple times per challenge exponent, and it

returns consistent outputs regardless of the challenge bit’s value. The advantage of O in breaking

the ODHE security of G,H is defined as AdvodheG,H,O = 2Pr[ODHEO
G,H]− 1.

In order to avoid trivial attacks, O is not allowed to query oracle Hash on input (i, s,X) if

X = gx[i] and if oracle Ch was already called with input s when the counter value was v = i. Note

that adversary is allowed to win the game if it happens to guess a future challenge exponent x and

query it to oracle Hash ahead of time; the corresponding triple (i, s,X) will not be added to the

set of inputs Shash that are not allowed to be made to oracle Ch. Finally, recall that the string

concatenation operator ∥ is defined to produce uniquely decodable strings, which helps to avoid

trivial string padding attacks.

Plausibility of the ODHE assumption. We do not know of any group G and function family H that

can be shown to achieve ODHE in the standard model. The original ODH assumption of [1] was

justified by a reduction in the random oracle model to the Strong Computational Diffie-Hellman

(SCDH) assumption. The latter was defined in [1] and is a weaker version of the Gap Diffie-Hellman

assumption from [20]. In Appendix A we give a definition for the SCDH assumption and prove

that it also implies the ODHE assumption in the random oracle model.

We provide this result as a corollary of two lemmas. The lemmas use the Strong Computational

Diffie-Hellman with Exposures (SCDHE) assumption as an intermediate step, where SCDHE is a

novel assumption that extends SCDH to allow multiple challenge queries, and to allow exposures.

To formalize our result, we define the Oracle Diffie-Hellman with Exposures in ROM (ODHER)
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assumption that is equivalent to the ODHE assumption in the random oracle model.

The first lemma establishes that SCDHE implies ODHE in the random oracle model, by a

reduction from ODHER to SCDHE. The proof of this lemma emulates the ODH to SCDH reduction

of [1]. In their reduction, the SCDH adversary simulates the random oracle and the hash oracle

for the ODH adversary; it uses its own decisional-DH oracle to check whether the ODH adversary

feeds gxy for the challenge values of x and y, and to maintain consistency between simulated oracle

outputs. This consistency maintenance is the main source of complexity in our reduction because

—in addition to the oracles mentioned above— we must also ensure that the simulated challenge

oracle is consistent.

The second lemma is a standard model reduction from SCDHE to SCDH. This reduction is a

standard “guess the index” reduction in which our SCDH adversary guesses which query the SCDHE

adversary will attack. The SCDH adversary replaces the answer to this query with the challenge

values it was given and replaces all other oracle queries with challenges that it has generated itself.

As usual, this results in a multiplicative loss of security, so the final theorem (combining both

lemmas) has a bound of the form AdvodherG,H,O ≤ qUp · AdvscdhG,S , where S is the SCDH adversary and

qUp is the number of Up queries made by ODHER adversary O.
Because of the multiplicative loss of security caused by the second lemma we also examine

the possibility of using Diffie-Hellman self-reducibility techniques to obtain a tighter bound on

the reduction from SCDHE to SCDH. The possibility of exposures in SCDHE makes this much

more difficult than one might immediately realize. We present a reduction that succeeds despite

these difficulties, by using significantly more complicated methods than in our first example of

this deduction. Specifically we build an SCDH adversary that makes guesses about the future

behavior of the SCDHE adversary it was given, and “rewinds” this adversary whenever its guess

was incorrect. Thus we ultimately obtain the much tighter bound of AdvodherG,H,O ≤ AdvscdhG,Su
+qUp ·2−u.

Here Su is the SCDH adversary that is defined for any parameter u ∈ N that bounds its worst case

running time, and qUp is the number of Up queries made by ODHER adversary O.

4 Ratcheted key exchange

Ratcheted key exchange allows users to agree on shared secret keys while providing very strong

security guarantees. In this work we consider a setting that encompasses two parties, and we

assume that only one of them sends key agreement messages. We call this party a sender, and the

other party a receiver. This model enables us to make the first steps towards capturing the schemes

that are used in the real world messaging applications. Future work could extend our model to

allow both parties to send key agreement messages, and to consider the group chat setting where

multiple users engage in shared conversations.

4.1 Definition of ratcheted key exchange

Consider Fig. 3 for an overview of algorithms that constitute a racheted key exchange scheme RKE,

and the interaction between them. The algorithms are RKE.IKg, RKE.SKg and RKE.RKg. We will

first provide an informal description of their functionality, and then formalize their syntax and

correctness requirements.

Initial key generation algorithm RKE.IKg generates and distributes the following keys: k, stks,

stkr , seks, sekr . Output key k is the initial shared secret key that can be used by both parties for any

purpose such as running a symmetric encryption scheme. Static keys stks and stkr are long-term

9



Figure 3: The interaction between ratcheted key exchange algorithms.

keys that will not get updated over time. It is assumed that stks is known to all parties, whereas

stkr contains potentially secret information and will be known only by the receiver. Session keys

seks and sekr contain secret information that is required for future key exchanges, such as MAC

keys (to ensure the authenticity of key exchange) and temporary secrets (that could be used for the

generation of the next output keys). As a result of running RKE.IKg, the sender gets stks, seks, ks
and the receiver gets stks, stkr , sekr , kr , where ks = kr = k. We use “s” and “r” as subscripts for

output keys and session keys, to indicate that the particular key is owned by the sender or by the

receiver, respectively. Note that normally both parties will have the same output key (i.e. ks = kr),

but this might not be true if an attacker succeeds to tamper with the protocol.

Next we define sender’s and receiver’s key generation algorithms RKE.SKg and RKE.RKg. These

algorithms model the key ratcheting process that generates new session keys and output keys while

deleting the corresponding old keys.

Sender’s key generation algorithm RKE.SKg is run whenever the sender wants to produce a

new shared secret key. It takes the sender’s static key stks and the sender’s session key seks. It

returns an updated sender’s session key seks, a new output key ks, and update information upd.

The update information is used by the receiver to generate the same output key.

Receiver’s key generation algorithm RKE.RKg takes sender’s static key stks, receiver’s static key

stkr , receiver’s session key sekr , update information upd (received from the sender) and the current

shared output key kr . It returns receiver’s session key sekr , output key kr , and a Boolean flag acc

indicating whether the new keys were generated succesfully. Setting acc = false will generally mean

that the received update information was rejected; our correctness definition will require that in

such case the receiver’s output key kr and the receiver’s session key sekr should remain unchanged.

This requirement is the reason why RKE.RKg takes the old value of kr as one of its inputs.

Ratcheted key exchange schemes.A ratcheted key exchange scheme RKE specifies algorithms RKE.IKg,

RKE.SKg and RKE.RKg. Associated to RKE is an output key length RKE.kl ∈ N and sender’s key

generation randomness space RKE.RS. Initial key generation algorithm RKE.IKg returns k, seks,

(stks, stkr , sekr), where k ∈ {0, 1}RKE.kl is an output key, seks is a sender’s session key, and

stks, stkr , sekr are sender’s static key, receiver’s static key and receiver’s session key, respectively.

The sender’s and receiver’s output keys are initialized to ks = kr = k. Sender’s key generation
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Game RKE-CORC
R

bad← false
(k, seks, (stks, stkr , sekr))← R.IKg
ks ← k ; kr ← k
CUp,RatRec ; Return (bad = false)

Game RE-CORC
R

bad← false
(k, seks, (stks, stkr , sekr))← R.IKg
ks ← k ; kr ← k
CUp,RatRec,Enc ; Return (bad = false)

Up

r←$ R.RS ; (seks, ks,upd)← R.SKg(stks, seks; r)
(sekr , kr , acc)←$ R.RKg(stks, stkr , sekr ,upd, kr)
If not ((acc = true) and (ks = kr)) then bad← true

RatRec(upd)

(sek′
r , k

′
r , acc)←$ R.RKg(stks, stkr , sekr ,upd, kr)

If (acc = false) and not ((k′
r = kr) and (sek′

r = sekr)) then bad← true

Enc(n,m, h)

c← R.Enc(ks, n,m, h) ; m′ ← R.Dec(kr , n, c, h) ; If (m′ ̸= m) then bad← true

Figure 4: Game RKE-COR defining correctness of ratcheted key exchange scheme R, and game
RE-COR defining correctness of ratcheted encryption scheme R. Oracles Up and RatRec are used
in both games, whereas oracle Enc is only used in game RE-COR.

algorithm RKE.SKg takes stks, seks and randomness r ∈ RKE.RS to return a new sender’s session

key seks, a new sender’s output key ks ∈ {0, 1}RKE.kl, and update information upd. Receiver’s key

generation algorithm RKE.RKg takes stks, stkr , sekr ,upd and receiver’s output key kr ∈ {0, 1}RKE.kl
to return a new receiver’s session key sekr , a new receiver’s output key kr ∈ {0, 1}RKE.kl, and a flag

acc ∈ {true, false}.

Correctness of ratcheted key exchange. Consider game RKE-COR of Fig. 4 associated to a ratcheted

key exchange scheme R and an adversary C, where C is provided with an access to oracles Up and

RatRec.

Oracle Up runs algorithm R.SKg to generate a new sender’s output key ks along with the

corresponding update information upd; it then runs R.RKg with upd as input to generate a new

receiver’s output key kr . It is required that acc = true and ks = kr at the end of every Up call.

This means that if the receiver uses update information received from the sender (in the correct

order), it is guaranteed to successfully generate the same output keys as the sender.

Oracle RatRec takes update information upd of adversary’s choice and attempts to run R.RKg

with upd (and current receiver’s keys) as input. The correctness requires that if the receiver’s key

update fails (meaning acc = false) then the receiver’s keys kr , sekr remain unchanged. This means

that if receiver’s attempt to generate new keys is not successful (e.g. if the update information

is corrupted in transition), then the receiver’s key generation algorithm should not corrupt the

receiver’s current keys. This is a usability property that requires that it is possible to recover from

failures, meaning that the receiver can later re-run its key generation algorithm with the correct

update information to successfully produce its next pair of (session and output) keys.

We consider an unbounded adversary and allow it to call its oracles in any order. The advantage

of C breaking the correctness of R is defined as AdvrkecorR,C = 1 − Pr[RKE-CORC
R]. Correctness

property requires that AdvrkecorR,C = 0 for all unbounded adversaries C. Note that our definition of

the correctness game with an unbounded adversary is equivalent to a more common correctness

definition that would instead explicitly quantify over all randomness choices of all algorithms. We
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stress that our correctness definition does not require any security properties. In particular, it does

not require that the update information is authenticated because oracle RatRec considers only

the case when R.RKg sets acc = false.

Our definition requires perfect correctness. However, it can be relaxed by requiring that ad-

versary C can only make a bounded number of calls to its oracles, and further requiring that its

advantage of winning the game is negligible.

4.2 Security of ratcheted key exchange

Ratcheted key exchange attempts to provide strong security guarantees even in the presence of an

attacker that can steal the secrets stored by the sender. Specifically, we consider an active attacker

that is able to intercept and modify any update information sent from the sender to the receiver.

The goal is that the attacker cannot distinguish the produced output keys from random strings,

and cannot make the two parties agree on output keys that do not match. Furthermore, we desire

certain stronger security properties to hold even if the attacker manages to steal secrets stored by

the sender, which we refer to as forward security and backward security. Forward security requires

that such an attacker cannot distinguish prior keys from random. Backward security requires

that the knowledge of sender’s secrets at the current time period can not be used to distinguish

keys generated (at some near point) in the future from random strings. Recall that our model is

intentionally one-sided; exposure of receiver’s secrets is not allowed. In particular, compromise of

all of the receiver’s secrets will permanently compromise security.

It is clear that if an attacker steals the secret information of the sender, then it can create its

own update information resulting in the receiver agreeing on a “secret” key that is known by the

attacker. It can be difficult to say what restrictions should be placed on the keys that the attacker

makes the receiver agree to. Is it a further breach of security if the attacker then later causes the

sender and the receiver to agree on the same secret key? What should happen if the attacker later

forwards update information that was generated by the sender to the receiver?

In our security model we choose to insist on two straightforward policies in this scenario. The

first is that whenever update information not generated by the sender is accepted by the receiver,

even full knowledge of the key that the receiver has generated should not leak any information about

other correctly generated keys. The second is that at any fixed point in time, if update information

generated by the sender is accepted by the receiver then the receiver should agree with the sender

on what the corresponding output key is, and the adversary should not be able to distinguish the

shared output key from random.

Key indistinguishability of ratcheted key exchange schemes. Consider game KIND on the left side of

Fig. 5 associated to a ratcheted key exchange scheme RKE and an adversary D. The advantage of

D in breaking the KIND security of RKE is defined as AdvkindRKE,D = 2Pr[KINDD
RKE]− 1.

The adversary is given the sender’s static key stks as well as access to oracles RatSend,

RatRec, Exp, ChSend, and ChRec. It can call oracle RatSend to receive update information

upd from the sender, and it can call oracle RatRec to pass arbitrary update information to the

receiver. Oracle Exp returns the current secrets seks, ks possessed by the sender as well as the

random seed r that was used to create the most recent upd in RatSend. Note that according to

our notation convention from Section 2, integer variable r is assumed to be initialized to 0 at the

beginning of the security game; this value will be returned if adversary calls Exp prior to RatSend.

The challenge oracles ChSend and ChRec provide the adversary with keys ks and kr in the
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real world (when b = 1), or with uniformly random bit strings in the random world (when b = 0).

The goal of the adversary is to distinguish between these two worlds. To disallow trivial attacks

the game makes use of tables op and auth (initialized as empty) as well as a boolean flag restricted

(initialized as false). Specifically, op keeps track of the oracle calls made by the adversary and

is used to ensure that it can not trivially win the game by calling oracle Exp to get secrets that

were used for one of the challenge queries. Table auth keeps track of the update information upd

generated by RatSend so that we can set the flag restricted whenever the adversary has taken

advantage of an Exp query to send maliciouly generated upd to RatRec. In this case we do not

expect the receiver’s key kr to look random or match the sender’s key ks so ChRec is “restricted”

and will return kr in both the real and random worlds.

Authenticity of key exchange. Our security definition implicitly requires the authenticity of key ex-

change. Specifically, assume that an adversary can violate the authenticity in a non-trivial way,

meaning without using Exp oracle to acquire the relevant secrets. This means that the adversary

can construct malicious update information upd∗ that is accepted by the receiver, while not setting

the restricted flag to true. By making the receiver accept upd∗, the adversary achieves the situation

when the sender and the receiver produce different output keys ks ̸= kr . Now adversary can call

oracles ChSend and ChRec to get both keys and compare them to win the game. In the real

world (b = 1) the returned keys will be different, whereas in the random world (b = 0) they will be

the same. We formalize this attack in Appendix B.

Allowing recovery from failures. Consider a situation when an attacker steals all sender’s secrets, and

hence has an ability to impersonate the sender. It can drop all further packets sent by the sender

and instead use the exposed secrets to agree on its own shared secret keys with the receiver. In the

security game this corresponds to the case when the adversary calls Exp and then starts calling

oracle RatRec with maliciously generated update information upd. This sets the restricted flag

to true, making the ChRec oracle always return the real receiver’s key kr regardless of the value

of game’s challenge bit b. The design decision at this point is – do we want to allow the game to

recover from this state, meaning should the restricted flag be ever set back to false?

Our decision on this matter was determined by the two “policies” discussed above. As long

as the adversary keeps sending maliciously generated update information upd, the restricted flag

will remain true. In this case, the real receiver’s key kr returned from ChRec should be of no

help in distinguishing the real sender’s key ks from random, as desired from the first policy. To

match the second policy, the next time adversary forwards the upd generated by the sender (i.e.

upd = auth[ir ]) to RatRec, if upd is accepted by the receiver then the restricted flag is set back

to false. This makes the output of ChRec again depend on the challenge bit, thus requiring kr to

be equal to ks and indistinguishable from random.

Alternative treatment of restricted flag. Our security definition of KIND can be strengthened by mak-

ing it never reset the restricted flag back to false. Instead, the game could require that if the adver-

sary exposes sender’s secrets and uses them to agree on its own shared output key with the receiver,

then all the communication between the sender and the receiver should be disrupted. Meaning that

any future attempt to simply forward sender’s update information upd to the receiver should re-

sult in RatRec rejecting it. Otherwise adversary would be defined to win the game. This can

be formalized in a number of ways. Our construction of ratcheted key exchange from Section 4.3

should be secure for a stronger definition like that, but would likely require stronger assumptions

to prove.
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Game KINDD
RKE

b←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr))←$ RKE.IKg
ks ← k ; kr ← k
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks)
Return (b′ = b)

RatSend

r←$ RKE.RS
(seks, ks,upd)← RKE.SKg(stks, seks; r)
auth[is]← upd ; is ← is + 1
Return upd

RatRec(upd)

z←$ RKE.RKg(stks, stkr , sekr ,upd, kr)
(sekr , kr , acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r, seks, ks)

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl
If b = 1 then return kr else return rkey[ir ]

Game RAEA
RE

b←$ {0, 1} ; is ← 0 ; ir ← 0
(k, seks, (stks, stkr , sekr))←$ RE.IKg
ks ← k ; kr ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(stks)
Return (b′ = b)

RatSend

r←$ RE.RS
(seks, ks,upd)← RE.SKg(stks, seks; r)
auth[is]← upd ; is ← is + 1
Return upd

RatRec(upd)

z←$ RE.RKg(stks, stkr , sekr ,upd, kr)
(sekr , kr , acc)← z
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r, seks, ks)

Enc(n,m, h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is, n) ∈ U then return ⊥
c1 ← RE.Enc(ks, n,m, h)
c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(is, n)}
S ← S ∪ {(is, n, cb, h)}
Return cb

Dec(n, c, h)

If restricted then
Return RE.Dec(kr , n, c, h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir , n, c, h) ∈ S then return ⊥
m← RE.Dec(kr , n, c, h)
If b = 1 then return m else return ⊥

Figure 5: Games defining key indistinguishability of ratcheted key exchange scheme RKE, and
authenticated encryption security of ratcheted encryption scheme RE.

4.3 Construction of a ratcheted key exchange scheme

In this section we construct a ratcheted key exchange scheme, and discuss some design consider-

ations by presenting a number of attacks that our scheme manages to evade. In Section 4.4 we

will deduce a bound on the success of any adversary attacking the KIND security of our scheme.

The idea of our construction is as follows. We let the sender and the receiver perform the Diffie-

Hellman key exchange. The receiver’s static key contains a secret DH exponent stkr = y and the

sender’s static key contains the corresponding public value stks = gy (working in some cyclic group
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Algorithm RKE.IKg

k←$ {0, 1}RKE.kl
fk←$ {0, 1}F.kl
hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp

stks ← (hk, g, gy) ; stkr ← y
seks ← (0, fk)
sekr ← (0, fk)
z ← (k, seks, (stks, stkr , sekr))
Return z

Algorithm RKE.SKg((hk, g, Y ), (is, fks); r)

x← r ; X ← gx ; σ ← F.Ev(fks, X)
s← H.Ev(hk, is ∥σ ∥X ∥Y x) ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ((is + 1, fks), ks, (X,σ))

Algorithm RKE.RKg((hk, g, Y ), y, (ir , fkr), (X,σ), kr)

acc ← (σ = F.Ev(fkr , X))
If not acc then return ((ir , fkr), kr , acc)
s← H.Ev(hk, ir ∥σ ∥X ∥Xy) ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return ((ir + 1, fkr), kr , acc)

Figure 6: Ratcheted key exchange scheme RKE = RATCHET-KE[G,F,H].

Adversary D1(stks)

(hk, g, Y )← stks

x←$ Zp ; RatRec(gx)
kr ← ChRec
k′
r ← H.Ev(hk, Y x)

If k′
r = kr then return 1

Else return 0

Adversary D2(stks)

(hk, g, Y )← stks

x←$ Zp ; RatRec(gx)
kr ← ChRec
(r, fks, ks)← Exp
k ∥ fk ← H.Ev(hk, fks ∥Y x)
If k = kr then return 1
Else return 0

Adversary D3(stks)

upd0 ← RatSend ; RatRec(upd0) ; ks ← ChSend
upd1 ← RatSend ; RatRec(upd1)
(r, fks, ks)← Exp ; (X0, σ0)← upd0

σ ← F.Ev(fks, X0) ; upd2 ← (X0, σ)
RatRec(upd2) ; kr ← ChRec
If ks = kr then return 1 else return 0

Adversary D4(stks)

(r, seks, ks)← Exp
((i∗s , fk

∗
s ), k

∗
s ,upd

∗)←$ RKE.SKg(stks, seks)
upd0 ← RatSend ; RatRec(upd∗)
upd1 ← RatSend ; (X,σ)← upd1

σ∗ ← F.Ev(fk∗
s , X) ; upd∗ ← (X,σ∗) ; RatRec(upd∗)

ks ← ChSend ; kr ← ChRec
If ks = kr then return 1 else return 0

Figure 7: Attacks against insecure variants of RKE = RATCHET-KE[G,F,H].

with generator g). In order to generate a new shared secret key, the sender picks its own secret

exponent x and computes the output key (roughly) as ks = H(stkx
s ) = H(gxy), where H is some

hash function. The sender then sends update information containing gx to the receiver, enabling

the latter to compute the same output key. In order to ensure the security of the key exchange,

both parties use a shared MAC key, meaning the update information also includes a tag of gx.

Note that the used MAC key should be regularly renewed in order to ensure that the scheme

provides backward security against exposures. As a result, the output of applying the hash function

on gxy is also used to derive a new MAC key. The initial key generation provides both parties with

a shared MAC key and a shared secret key that are sampled uniformly at random. The formal

definition of our key exchange scheme is as follows.

Ratcheted key exchange scheme RATCHET-KE. Let G be a cyclic group of order p ∈ N, and let

G∗ denote the set of its generators. Let F be a function family such that F.In = G. Let H be a

function family such that H.In = {0, 1}∗ and H.ol > F.kl. We build a ratcheted key exchange scheme

RKE = RATCHET-KE[G,F,H] as defined in Fig. 6, with RKE.kl = H.ol− F.kl and RKE.RS = Zp.

Design considerations. We will examine some of the design decisions of RKE by considering several
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ratcheted key exchange schemes that are weakened versions of RKE, and corresponding adversaries

that are able to successfully attack these schemes. The first two will omit the use of a MAC and

thus be vulnerable to attacks where the adversary sends its own update information to RatRec

without having called Exp first (though the second will have to make an expose query afterwards).

In the latter two examples we consider variations of RKE that use fewer inputs to the hash function.

Our adversaries against these schemes thereby justify the choices we made for the input to the hash

function. For the sake of compactness we omit showing that the constructed KIND adversaries have

access to oracles RatSend,RatRec,Exp,ChSend,ChRec, and we omit showing that oracle calls

return any output whenever this output is not used by the adversary.

Schemes without a MAC. First let us consider changing RKE to not use its MAC F and instead

simply use an unauthenticated gx as its update information. For simplicity we will additionally

assume that the only input to H is a group element gxy. Consider adversary D1 shown in Fig. 7. It

makes a RatRec query with a gx of its own choice, then calls oracle ChRec and checks whether

the key it received was real or random by comparing it to H(hk, Y x). Referring to this weakened

scheme as RKE1, it is clear that Adv
kind
RKE1,D1

= 1− 2−RKE.kl.

Besides using a MAC, another way to prevent the specific attack given above would be to put

a shared secret key fk into the hash function along with gxy for every update. Let RKE2 denote

a version of RKE that still does not use a MAC but updates its keys with the hash function via

k ∥ fk ← H.Ev(hk, fk ∥ gxy). An adversary like D1 will not work against RKE2 because computing

the new value of k requires knowing the secret value fk. But there is still a simple attack against

RKE2. Consider adversary D2 shown in Fig. 7. It works in the same way as D1 except it needs to

make an expose query to obtain fks before it can compute k using the hash function. One subtle

point to notice is that it is important that D2 calls Exp after its call to RatRec. Otherwise the

restricted flag in KIND would have been set to true and ChRec would always return the real key

(instead of returning a randomly chosen key when the challenge bit in KIND is set to 0). Having

noticed this it is clear that AdvkindRKE2,D2
= 1− 2−RKE.kl.

In Appendix B we give an attack against any ratcheted encryption scheme, showing that if it is

possible for an adversary to generate its own upd that the receiver will accept, than the adversary

can use this ability to successfully attack the ratcheted encryption scheme. This proves that some

sort of authentication is required for the update information if we want a scheme to be secure.

Authenticating the update information in the Double Ratchet algorithm. The default version of the

Double Ratchet algorithm [19, 15] — which is used in the Signal protocol [21] — does not au-

thenticate the update information. A single, one-sided version of this algorithm would evolve its

keys in a way that is vaguely similar to the RKE2 scheme discussed above, so it would not meet our

security definition. This does not immediately lead to any real-world attacks, and could mean that

our security definition is stronger than necessary. Furthermore, [15] describes the header encryp-

tion variant of the Double Ratchet algorithm. A single, one-sided version of this algorithm provides

some form of authentication for update information and might meet our security definition.

Necessity of inputs to H. In the construction of RATCHET-KE, function H(hk, ·) takes a string

w = i ∥σi ∥ gxi ∥ gxiy as input. The most straightforward part of w is gxiy, which provides unpre-

dictability to ensure that the generated keys are indistinguishable from uniformly random strings.

String w also includes the counter i, and the corresponding update information updi = (gxi , σi).

The inclusion of counter i in w ensures that an attacker cannot perform a “key-reuse” attack to

make the receiver generate an output key that was already used before; we provide an example
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of such attack below. We also describe a “key-collision” attack against the KIND security of the

scheme that is prevented by including updi in w. Finally, note that our concatenation operator ∥
is defined to produce uniquely decodable strings, so the mapping of (i, σi, g

xi , gxiy) into string w is

injective; this helps to avoid attacks that take advantage of malleable encodings.

Key-reuse attack. Game KIND makes sure that if challenge keys are acquired from the sender and

the receiver for the same value of i (i.e. is = ir), then these keys are consistent even if they are picked

randomly. Otherwise it would be trivial to attack any ratcheted key exchange scheme. However,

the game does not maintain such consistency between different values of i. Let RKE3 denote RKE

if it was changed to use only gxy as input to the hash function. Consider the “key-reuse” attack

D3 shown in Fig. 7 that exploits the above as follows. Adversary D3 starts by calling RatSend,

RatRec and ChSend to get a sender’s challenge key ks. Note that if the challenge bit is b = 1

in game KIND, then ks equals to H.Ev(hk, Y x) for some exponent x generated during RatSend.

Next, the adversary calls both RatSend and RatRec to ratchet the key forward, in order to be

able to make Exp queries. It calls Exp to get fks so that it can re-authenticate the same value

of X = gx that was used for the sender’s challenge query. Then it sends X and its new MAC tag

σ to the receiver, which sets the restricted flag true. The latter means that calling ChRec results

in getting the receiver’s real output key regardless of the challenge bit. If this key is equal to the

previously learned sender’s challenge key then it is highly likely that the challenge bit b equals 1,

otherwise it must be 0. This gives the advantage of AdvkindRKE3,D3
= 1− 2−RKE.kl.

Key-collision attacks. We now describe the final attack idea that does not work against our construc-

tion but would have been possible if the update information upd = (gxi , σ) was not included in the

hash function. Consider changing RATCHET-KE[G, F, H] to have H(hk, ·) take inputs of the form

w = i ∥ gxiy. Call this scheme RKE4. This enables the following attack, as defined by the adversary

D4 in Fig. 7. Assume that an attacker compromises the sender’s keys ks and fks and immediately

uses the compromised authenticity to establish new keys k∗
s and fk∗

s , shared between the attacker

and the receiver. Now let upd = (X,σ) be the next update information produced by the sender.

The attacker can construct malicious update information upd∗ = (X,σ∗), where σ∗ = F.Ev(fk∗
s , X),

and send it to the receiver. The receiver would accept upd∗ and use the output of H.Ev(hk, i ∥Xy)

as new key material, resulting in the same keys as those generated by the sender. Now the the

receiver and the sender share an output key, while the restricted flag is set true, so checking whether

the output of the two challenge oracles is the same yields a good attack.

We will not give the exact advantage of D4. If σ
∗ and σ happen to be exactly the same, then the

restricted flag would be set back to false and the attack would fail because the two keys received from

the sender’s and the reciever’s challenge oracles would be the same regardless of game’s challenge

bit. But if σ∗ = σ was likely to occur then the ratcheted key exchange scheme would be insecure

for other reasons. One could formalize this by building a second adversary against RKE4 to show

that one of the two adversaries must have a high advantage. For the purpose of this section we

simply note that this event is extremely unlikely to occur for any typical choice of hash function

and MAC.

4.4 Security proof for our ratcheted key exchange scheme

In previous section we showed that several variations of our ratcheted key exchange scheme RKE =

RATCHET-KE[G, F, H] are insecure. In this section we will prove that our scheme is secure. We

now present our theorem bounding the advantage of an adversary breaking the KIND-security of
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RKE to the SUFCMA-security of F and to the ODHE-security of G,H.

Theorem 4.1 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let F be a function family such that F.In = G. Let H be a function family such that H.In = {0, 1}∗
and H.ol > F.kl. Let RKE = RATCHET-KE[G,F,H]. Let D be an adversary attacking the KIND-

security of RKE that makes qRatSend queries to its RatSend oracle, qRatRec queries to its RatRec

oracle, qExp queries to its Exp oracle, qChSend queries to its ChSend oracle, and qChRec queries

to its ChRec oracle. Then there is an adversary F attacking the SUFCMA-security of F, and

adversaries O1,O2 attacking the ODHE-security of G,H, such that

AdvkindRKE,D ≤ 2·(qRatSend+1) · Advsufcma
F,F + 2·qRatSend ·AdvodheG,H,O1

+ 2·AdvodheG,H,O2
.

Adversary F makes at most qRatSend queries to its Tag oracle and qRatRec queries to its Verify

oracle. Adversary O1 makes at most qRatSend queries to its Up oracle, 2 queries to its Ch oracle,

qExp queries to its Exp oracle, and qRatSend+qRatRec−2 queries to its Hash oracle. Adversary O2

makes at most qRatSend queries to its Up oracle, qRatSend + qRatRec queries to its Ch oracle,qExp
queries to its Exp oracle, and qRatRec + qExp queries to its Hash oracle. Each of F , O1, O2 has

a running time approximately that of D.

The proof requires careful attention to detail due to subtleties. The most natural proof method

may be to proceed one RatSend query at a time, first replacing the output of the hash function

with random bits (unless an expose happens) and then using the security of the MAC to argue

that the adversary cannot produce any modified update information that will be accepted by the

receiver without exposing. But there is a subtle flaw with this proof technique. The adversary may

attempt to create a forged upd before it has decided whether to expose. In this case we need to

check the validity of their forgery with a MAC key, before we know whether it should be random

or a valid output of the hash function.

To avoid this problem we first use a hybrid argument to show that no such forgery is possible

before replacing all non-exposed keys with random. We proceed one RatSend query at a time,

showing that we can temporarily replace the key with random when checking the sort of attempted

forgery described above. This then allows us to use the security of the MAC to assume that the

forgery attempt failed without us having to commit to a key to verify with. We thus are able to

show one step at a time that all such forgery attempts can be assumed to fail without having to

check.

Once this is done, we are never forced to use a key before the adversary has committed to

whether it will perform a relevant exposure of the secret state. As such we can safely delay our

decision of whether or not the key should be replaced by random values until it is known whether

an expose will happen. This allows us to use the ODHE security of H and G to argue that we can

replace all of the generated keys with randomness, only using H to generate the real keys at the

last moment whenever an expose query is made.

Proof of Theorem 4.1: Consider the sequence of games shown in Fig. 8. Lines not annotated

with comments are common to all games. G0,0 is identical to KINDD
RKE with the code of RKE

inserted. Additionally, a flag unchanged has been added. This flag keeps track of whether the

most recent update information was passed unchanged from the sender to the receiver and thus

the keys kr and fkr should be indistinguishable from random to adversary D. In this case, the

adversary should not be able to create update information upd that is accepted by RatRec unless

it calls Exp or forwards along the upd generated by the sender. We prove this with a hybrid
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argument over the games G0,0, . . . ,G0,qRatSend+1. Game G0,j assumes forgery attempts fail for the

first j keys, sets a bad flag if D is successful at forging against the (j + 1)-th key, and performs

normally for all following keys. Game G∗
0,j is the same except it also acts as if D failed to forge

even when the bad flag is set. Thus, from the perpective of an adversary G∗
0,j is simply assumping

that forgery attempts fail for the first j + 1 keys, making it equivalent to G0,j+1. Thus for all

j ∈ {0, . . . , qRatSend},

Pr[G0,0] = Pr[KINDD
RKE] and Pr[G∗

0,j ] = Pr[G0,j+1].

Furthermore, for all j ∈ {1, . . . , qRatSend}, games G0,j and G∗
0,j are identical until bad, so the

fundamental lemma of game playing [6] gives:

Pr[G0,j ]− Pr[G∗
0,j ] ≤ Pr[badG

∗
0,j ],

where Pr[badQ] denotes the probability of setting the bad flag in game Q.

We cannot directly bound Pr[badG
∗
0,j ] using the security of F because the key being used for F is

chosen as output from H instead of uniformly at random, consider the relationship between games

G∗
0,j and Ij (the latter also shown in Fig. 8). Game Ij is identical to G∗

0,j , except that in Ij the

output of hash function H is replaced with a uniformly random string whenever i+1 = j (thus the

key used to check whether bad should be set when i = j is uniformly random).

Note that when j = 0 the games G∗
0,0 and I0 are identical so Pr[badG

∗
0,0 ] = Pr[badI0 ]. For other

values of j we relate the probability that these games set bad to the advantage of the oracle Diffie-

Hellman adversary O1 that is defined in Fig. 10. Adversary O1 picks j′ at random and then uses

its oracles to simulate G∗
0,j or Ij . Then if the bad flag is set it sets a bit b′ equal to 1. This bit is

ultimately returned by O. Thus the probability that O outputs 1 is exactly the probability that

the bad flag would be set in the game it is simulating.

Let bodhe denote the challenge bit in game ODHEO1
G,H, and let b′ denote the corresponding guess

made by the adversary O1. Let j′ be the value sampled in the first step of O1. For each choice

of j′, adversary O1 perfectly simulates the view of D in either G∗
0,j′ or Ij′ depending on whether

its Ch oracle is returning real output of the hash function or a random value. If D performs an

action that would prevent bad from being set (such as calling Exp when is = j′) then O1 no longer

perfectly simulates the view of D, but it does not matter for our analysis because we already know

bad (and thus b′) will not be set. So for all j ∈ {1, . . . , qRatSend}, we have

Pr[badG
∗
0,j ] = Pr[ b′ = 1 | bodhe = 1, j′ = j ],

Pr[badIj ] = Pr[ b′ = 1 | bodhe = 0, j′ = j ].

Combining the above for all values of j (using Pr[badG
∗
0,0 ] = Pr[badGis ]) gives

AdvodheG,H,O1
= Pr[ b′ = 1 | bodhe = 1 ]− Pr[ b′ = 1 | bodhe = 0 ]

=

qRatSend∑
j=1

Pr[j = j′](Pr[badG
∗
0,j ]− Pr[badIj ]) =

qRatSend∑
j=0

Pr[badG
∗
0,j ]− Pr[badIj ]

qRatSend
.

Note that we were able to change the starting index of j for that last summation because Pr[badG
∗
0,0 ] =

Pr[badI0 ], as we noted before.
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Games G0,j ,G
∗
0,j ,Ij

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true ; rand←$ {0, 1}H.ol

ks←$ {0, 1}RKE.kl ; kr ← ks ; fks←$ {0, 1}F.kl ; fkr ← fks

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is]← “ch”
x←$ Zp ; σ ← F.Ev(fks, g

x) ; upd ← (gx, σ)
s← H.Ev(hk, is ∥σ ∥ gx ∥ gxy)
If is + 1 = j then s← rand // Ij
auth[is]← upd ; is ← is + 1 ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return upd

RatRec(upd)

(X,σ)← upd
If unchanged and (op[ir ] ̸= “exp”) and (upd ̸= auth[ir ]) then
If ir < j then return false
If ir = j then
If σ ̸= F.Ev(fkr , X) then return false
bad← true
Return false // G∗

0,j ,Ij
If σ ̸= F.Ev(fkr , X) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then
unchanged← true ; restricted← false

Else
unchanged← false

s← H.Ev(hk, ir ∥σ ∥X ∥Xy)
If ir + 1 = j then s← rand // Ij
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (x, (is, fks), ks)

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks else return rkey[is]

ChRec

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl
If b = 1 then return kr else return rkey[ir ]

Figure 8: Games G0,j ,G
∗
0,j , Ij for proof of Theorem 4.1.

To complete the hybrid argument part of the proof, we can finally bound the probability that

bad gets set true in Ij . Doing so requires adversary D to successfully forge a MAC tag for a uni-
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Games G1–G2

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true
ks[0]←$ {0, 1}RKE.kl ; kr ← ks[0] ; fks[0]←$ {0, 1}F.kl ; fkr ← fks[0]
hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)
b′←$DRatSend,RatRec,Exp,ChSend,ChRec(stks) ; Return (b′ = b)

RatSend

If op[is] = ⊥ then op[is]← “ch”
x←$ Zp ; σ ← F.Ev(fks[is], g

x) ; upd ← (gx, σ)
s← H.Ev(hk, is ∥σ ∥ gx ∥ gxy) // G1

s←$ {0, 1}H.ol // G2

auth[is]← upd ; is ← is + 1 ; ks[is]← s[1 . . .RKE.kl]
fks[is]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl] ; Return upd

RatRec(upd)

(X,σ)← upd
If unchanged and (op[ir ] ̸= “exp”) and (upd ̸= auth[ir ]) then
Return false

If unchanged then fkr ← fks[ir ]
If (σ ̸= F.Ev(fkr , X)) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ]
unchanged← true ; restricted← false ; ir ← ir + 1

Else
unchanged← false
s← H.Ev(hk, ir ∥σ ∥X ∥Xy)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; (X,σ)← auth[is − 1]
s← H.Ev(hk, (is − 1) ∥σ ∥X ∥Xy) ; ks[is]← s[1 . . .RKE.kl]
fks[is]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return (x, (is, fks[is]), ks[is])

ChSend

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl
If b = 1 then return ks[is] else return rkey[is]

ChRec

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl
If unchanged then kr ← ks[ir ]
If b = 1 then return kr else return rkey[ir ]

Figure 9: Games G1,G2 for proof of Theorem 4.1.

formly random key, allowing us to reduce to the security of F. Formally, we use D to construct
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Adversary OUp,Ch,Exp,Hash
1 (hk, g, Y )

j′←$ {1, . . . , qRatSend} ; b←$ {0, 1} ; b′ ← 0
is ← 0 ; ir ← 0 ; unchanged← true
ks←$ {0, 1}RKE.kl ; kr ← ks
fks←$ {0, 1}F.kl ; fkr ← fks ; stks ← (hk, g, Y )
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
Return b′

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] ̸= “exp”) ∧ (upd ̸= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then
If σ ̸= F.Ev(fkr , X) then return false
bad← true ; b′ ← 1 ; Return false

If σ ̸= F.Ev(fkr , X) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else unchanged← false
If ir + 1 ̸= j′ then s← Hash(ir , σ ∥X,X)
Else s← Ch(σ ∥X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp” ; x← Exp
Return (x, (is, fks), ks)

RatSendSim

If op[is] = ⊥ then op[is]← “ch”
X ← Up ; σ ← F.Ev(fks, X)
upd ← (X,σ)
If is + 1 ̸= j′ then
s← Hash(is, σ ∥X,X)

Else
s← Ch(σ ∥X)

auth[is]← upd ; is ← is + 1
ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return upd

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then
rkey[is]←$ {0, 1}RKE.kl

If b = 1 then return ks
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then
rkey[ir ]←$ {0, 1}RKE.kl

If b = 1 then return kr
Else return rkey[ir ]

Figure 10: Adversary O1 for proof of Theorem 4.1.

an adversary F attacking the SUFCMA security of F. Adversary F (shown in Fig. 11) simulates

adversary D and guesses when it will first create a forgery. F simulates game Ij for adversary

D until that point, and uses its own SUFCMA oracles to answer D’s queries at the time when

it expects the forgery. Similar to the earlier case when O1 simulated D, adversary F may fail to

simulate Ij for adversary D when the latter performs certain actions that preclude bad from being

set. This does not affect our analysis because we only require that if bad is set then F will return a

successful forgery. Thus for j ∈ {0, . . . , qRatSend}, Pr[badIj ] ≤ Pr[ SUFCMAF
F | j′ = j ] which gives

Advsufcma
F,F ≥ (1/(qRatRec + 1))

∑qRatRec
j=0 Pr[badIj ].

The above work allows us to transition to game G0,qRatSend+1 as shown in the following equations.

From there we will move to games G1,G2 shown in Fig. 9. All of the summations below are from

j = 0 to j = qRatSend.

Pr[KINDD
RKE] = Pr[G0,0] = Pr[G1,qRatSend ] +

∑
j Pr[G0,j ]− Pr[G∗

0,j ]

≤ Pr[G1,qRatSend ] +
∑

j Pr[bad
G∗

0,j ]
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Adversary FTag,Verify

j′←$ {0, . . . , qRatSend} ; b←$ {0, 1}
is ← 0 ; ir ← 0 ; unchanged← true
rand←$ {0, 1}H.ol ; ks←$ {0, 1}RKE.kl ; kr ← ks
fks←$ {0, 1}F.kl ; fkr ← fks ; hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp ; stks ← (hk, g, gy)
DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] ̸= “exp”) ∧ (upd ̸= auth[ir ]))
If unchanged and forge then

If ir < j′ then return false
If ir = j′ then
If not Verify(X,σ) then return false
bad← true
Return false

If (ir = j′) then
If not Verify(X,σ) then return false

Else
If σ ̸= F.Ev(fkr , X) then return false

If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then

unchanged← true ; restricted← false
Else
unchanged← false

s← H.Ev(hk, ir ∥σ ∥X ∥Xy)
If ir + 1 = j then s← rand
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return true

RatSendSim

If op[is] = ⊥ then op[is]← “ch”
x←$ Zp

If is = j′ then σ ← Tag(gx)
Else σ ← F.Ev(fks, g

x)
s← H.Ev(hk, is ∥σ ∥ gx ∥ gxy)
If is + 1 = j then s← rand
upd ← (gx, σ) ; auth[is]← upd
is ← is + 1 ; ks ← s[1 . . .RKE.kl]
fks ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]
Return upd

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return (x, (is, fks), ks)

ChSendSim

If op[is] = “exp” then return ⊥
op[is]← “ch”
If rkey[is] =⊥ then
rkey[is]←$ {0, 1}RKE.kl

If b = 1 then return ks
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If rkey[ir ] =⊥ then
rkey[ir ]←$ {0, 1}RKE.kl

If b = 1 then return kr
Else return rkey[ir ]

Figure 11: Adversary F for proof of Theorem 4.1.

= Pr[G1,qRatSend ] + qRatSend · AdvodheG,H,O1
+
∑

j Pr[bad
Ij ]

≤ qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + Pr[G1,qRatSend ].

Game G1 is identical to G0,qRatSend+1, but has been rewritten to allow make the final game transition

of our proof easier to follow. The complicated, nested if-condition at the beginning of RatRec

has been simplified because ir < qRatSend + 1 always holds when unchanged is true. Additionally,

when unchanged is true (and thus upd has been directly forwarded between RatSend and RatRec

without being modified) we delay setting kr , fkr until they are about to be used, at which point they

are set to match the appropriate ks, fks that have been stored in a table. We have Pr[G0,qRatSend+1] =

Pr[G1].

Games G1 and G2 differ only in that, in G2, values of k0 and fks are chosen at random instead

of as the output of H (unless Exp is called in which case we reset them to the correct output of

H). We bound the difference between Pr[G1] and Pr[G2] by the advantage of the Diffie-Hellman

adversary O2 that is defined in Fig. 12. Let bodhe denote the challenge bit in game ODHEO2
G,H, and
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Adversary OUp,Ch,Exp,Hash
2 (hk, g, Y )

b←$ {0, 1} ; is ← 0 ; ir ← 0 ; unchanged← true
ks[0]←$ {0, 1}RKE.kl ; kr ← ks[0]
fks[0]←$ {0, 1}F.kl ; fkr ← fks[0] ; hk←$ {0, 1}H.kl

g←$ G∗ ; y←$ Zp ; stks ← (hk, g, Y )
b′←$DRatSendSim,RatRecSim,ExpSim,ChSendSim,ChRecSim(stks)
If (b′ = b) then return 1 else return 0

RatSendSim

If op[is] = ⊥ then
op[is]← “ch”
If is ̸= 0 then
(X,σ)← auth[is − 1] ; s← Ch(σ||X)
SaveKeys(is, s)

X ← Up ; σ ← F.Ev(fks[is], X) ; upd ← (X,σ)
auth[is]← upd ; is ← is + 1 ; Return upd

RatRecSim(upd)

(X,σ)← upd
forge← ((op[ir ] ̸= “exp”) ∧ (upd ̸= auth[ir ]))
If unchanged and forge then return false
If unchanged then fkr ← fks[ir ]
If (σ ̸= F.Ev(fkr , X)) then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ]
unchanged← true ; restricted← false ; ir ← ir + 1

Else
unchanged← false ; s← Hash(ir , σ||X,X)
ir ← ir + 1 ; kr ← s[1 . . .RKE.kl]
fkr ← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

Return true

SaveKeys(i, s)

ks[i]← s[1 . . .RKE.kl]
fks[i]← s[RKE.kl+ 1 . . .RKE.kl+ F.kl]

ExpSim

If op[is] = “ch” then return ⊥
If (op[is] =⊥) and (is ̸= 0) then
x← Exp
(X,σ)← auth[is − 1]
s← Hash(is − 1, σ||X,X)
SaveKeys(is, s)

op[is]← “exp”
Return (x, (is, fks[is]), ks[is])

ChSendSim

If op[is] = “exp” then return ⊥
If (op[is] =⊥) and (is ̸= 0) then
(X,σ)← auth[is − 1]
s← Ch(σ||X)
SaveKeys(is, s)

op[is]← “ch”
If rkey[is] =⊥ then
rkey[is]←$ {0, 1}RKE.kl

If b = 1 then return ks[is]
Else return rkey[is]

ChRecSim

If restricted then return kr
If op[ir ] = “exp” then return ⊥
If (op[ir ] =⊥) and (ir ̸= 0) then
(X,σ)← auth[ir − 1]
s← Ch(σ||X)
SaveKeys(ir , s)

op[ir ]← “ch”
If rkey[ir ] =⊥ then
rkey[ir ]←$ {0, 1}RKE.kl

If unchanged then kr ← ks[ir ]
If b = 1 then return kr
Else return rkey[ir ]

Figure 12: Adversary O2 for proof of Theorem 4.1.

let b′ denote the corresponding guess made by the adversary O2. O2 uses its own oracle to simulate

the view of D. When bodhe = 1 it perfectly simulates the view of D in G1, and when bodhe = 0 it

perfectly simulates the view of G2. When D correctly guess the bit b then O2 assume its challenge

oracle must returning real output from the hash function so it outputs b′ = 1. Otherwise it outputs

b′ = 0. Thus, Pr[G1] = Pr[ b′ = 1 | bodhe = 1 ] and Pr[G2] = Pr[ b′ = 1 | bodhe = 0 ] from which it

follows that AdvodheG,H,O2
= Pr[G1] − Pr[G2]. As a result of the above and our previous sequence of

inequalities, we get:

Pr[KINDD
RKE] ≤ qRatSend · AdvodheG,H,O1

+ (qRatSend + 1) · Advsufcma
F,F + Pr[G1]

= qRatSend · AdvodheG,H,O1
+ (qRatSend + 1) · Advsufcma

F,F + AdvodheG,H,O2
+ Pr[G2].

Finally, Pr[G2] = 1/2 because the view of D is independent of b in G2. To see this, first note that

oracle ChSend returns uniformly random bits regardless of the challenge bit. So we only need to
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verify that the ChRec returns the same random bits if its last if-statement is reached. This could

only fail to occur if ChRec was called when restricted and unchanged are both false. However, flags

restricted and unchanged can only be simultaneously false at the end of an oracle call to RatRec

if they were already both false at the time when this oracle was called. Thus no call to RatRec

can be the first to set them both to false.

This yields the claimed bound on the advantage of D. The bounds on the number of oracle queries

made by the adversaries are obtained by examining their code.

5 Ratcheted encryption

In this section we define ratcheted encryption schemes, and show how to construct them by com-

posing ratcheted key exchange with symmetric encryption. This serves as a starting point for

discussing ratcheted encryption, and we also discuss possible extensions.

Ratcheted encryption schemes. Our definition of ratcheted encryption extends the definition of ratch-

eted key exchange by adding encryption and decryption algorithms. Ratcheted encryption schemes

inherit the key generation algorithms from ratcheted key exchange schemes, and use the resulting

shared keys as symmetric encryption keys. In line with our definition for ratcheted key exchange,

we only consider one-sided ratcheted encryption, meaning that the sender uses its key only for

encryption, and the receiver uses its key only for decryption.

A ratcheted encryption scheme RE specifies algorithms RE.IKg, RE.SKg, RE.RKg, RE.Enc and

RE.Dec, where RE.Enc and RE.Dec are deterministic. Associated to RE is a nonce space RE.NS,

sender’s key generation randomness space RE.RS, and a ciphertext length function RE.cl : N → N.
Initial key generation algorithm RE.IKg returns k, seks, (stks, stkr , sekr), where k is an encryption

key, stks, seks are a sender’s static key and session key, and stkr , sekr are receiver’s static key and

receiver’s session key, respectively. The sender’s and receiver’s (symmetric) encryption keys are ini-

tialized to ks = kr = k. Sender’s key generation algorithm RE.SKg takes stks, seks and randomness

r ∈ RE.RS to return a new sender’s session key seks, a new sender’s encryption key ks, and up-

date information upd. Receiver’s key generation algorithm RE.RKg takes stks, stkr , sekr ,upd and

receiver’s encryption key kr to return a new receiver’s session key sekr , a new receiver’s encryption

key kr , and a flag acc ∈ {true, false}. Encryption algorithm RE.Enc takes ks, a nonce n ∈ RE.NS, a

plaintext message m ∈ {0, 1}∗ and a header h ∈ {0, 1}∗ to return a ciphertext c ∈ {0, 1}RE.cl(|m|).

Decryption algorithm RE.Dec takes kr , n, c, h to return m ∈ {0, 1}∗ ∪ {⊥}.

Correctness of ratcheted encryption. Correctness of ratcheted encryption extends that of ratcheted

key exchange. It requires that messages encrypted using sender’s key should correctly decrypt using

the corresponding receiver’s key.

Consider game RE-COR of Fig. 4 associated to a ratcheted encryption scheme R and an ad-

versary C, where C is provided with an access to oracles Up, RatRec and Enc. The advantage of

C breaking the correctness of R is defined as AdvrecorR,C = 1 − Pr[RE-CORC
R]. Correctness property

requires that AdvrecorR,C = 0 for all unbounded adversaries C. Compared to the correctness game

for ratcheted key exchange, the new element is that adversary C also gets access to an encryption

oracle Enc, which can be queried to test the decryption correctness.

Ratcheted authenticated encryption. Consider game RAE on the right side of Fig. 5 associated to a

ratcheted encryption scheme RE and an adversary A. It extends the security definition of ratcheted
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Algorithm RE.IKg

(k, seks, (stks, stkr , sekr))←$ RKE.IKg
Return (k, seks, (stks, stkr , sekr))

Algorithm RE.SKg(stks, seks; r)

(seks, ks,upd)← RKE.SKg(stks, seks; r)
Return (seks, ks,upd)

Algorithm RE.RKg(stks, stkr , sekr ,upd, kr)

(sekr , kr , acc)←$ RKE.RKg(stks, stkr , sekr ,upd, kr)
Return (sekr , kr , acc)

Algorithm RE.Enc(ks, n,m, h)

c← SE.Enc(ks, n,m, h)
Return c

Algorithm RE.Dec(kr , n, c, h)

m← SE.Dec(kr , n, c, h)
Return m

Figure 13: Ratcheted encryption scheme RE = RATCHET-ENC[RKE, SE].

key exchange (as defined in game KIND on the left side of Fig. 5) by replacing oracles ChSend

and ChRec with oracles Enc and Dec. Oracles RatSend, RatRec and Exp are the same in

both games. Oracles Enc and Dec are defined as follows. In the real world (when b = 1) oracle

Enc encrypts messages under the sender’s key, and oracle Dec decrypts ciphertexts under the

receiver’s key. In the random world (when b = 0) oracle Enc returns uniformly random strings,

and oracle Dec always returns an incorrect decryption symbol ⊥. The goal of the adversary is

to distinguish between the two cases. The advantage of A in breaking the RAE security of RE is

defined as AdvraeRE,A = 2Pr[RAEA
RE]− 1.

We note that the adversary is only allowed to get a single encryption for each unique pair of

(is, n). This restriction stems from the fact that most known nonce-based encryption schemes are

not resistant to nonce-misuse. Our definition can be relaxed to only prevent queries where (is, n,m)

— or even (is, n,m, h) — are repeated, but it would increasingly limit the choice of the underlying

symmetric schemes that can be used for this purpose (fewer schemes would satisfy stronger security

definitions of multi-user authenticated encryption).

Revisiting the treatment of the restricted flag. Similar to the definition of KIND, one could consider

strengthening the definition of RAE by never resetting the restricted flag back to false (as discussed

in Section 4.2). There would seem to be a more clear motivation to use the stronger definition

in the case of encryption. Namely, our current security definition allows adversary to comprimse

the sender, use the exposed secrets to communicate with the receiver, and then restore the inital

conversation link between the sender and the receiver. This represents an ability to stealthily

insert arbitrary messages in the middle of someone’s conversation, without ultimately disrupting

the conversation. However, note that even a stonger definition (one that does not reset the restricted

flag) appears to allow such attack, because the adversary might be able to compromise the sender

and insert the messages before the next time the key ratcheting happens. The success of such

attack would depend on how often the keys are being ratcheted.

Ratcheted encryption scheme RATCHET-ENC. We build a ratcheted encryption scheme by combin-

ing a ratcheted key exchange scheme with a symmetric encryption scheme. In our composition the

output keys of the ratcheted key exchange scheme are used as encryption keys for the symmetric

encryption scheme.

Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric encryption scheme such

that SE.kl = RKE.kl. We build a ratcheted encryption scheme RE = RATCHET-ENC[RKE, SE] as

defined in Fig. 13, with RE.NS = SE.NS, RE.RS = RKE.RS and RE.cl = SE.cl.
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Security of ratcheted encryption scheme RATCHET-ENC. The following says that the RAE security

of ratcheted encryption scheme RE = RATCHET-ENC[RKE,SE] can be reduced to the KIND security

of the ratcheted key exchange scheme RKE and MAE security of the symmetric encryption scheme

SE.

Theorem 5.1 Let RKE be a ratcheted key exchange scheme. Let SE be a symmetric encryption

scheme such that SE.kl = RKE.kl. Let RE = RATCHET-ENC[RKE, SE]. Let A be an adversary

attacking the RAE-security of RE that makes qRatSend queries to its RatSend oracle, qRatRec

queries to its RatRec oracle, qExp queries to its Exp oracle, qEnc queries to its Enc oracle, and

qDec queries to its Dec oracle. Then there is an adversary D attacking the KIND-security of RKE

and an adversary N attacking the MAE-security of SE such that

AdvraeRE,A ≤ 2 · AdvkindRKE,D + Advmae
SE,N .

Adversary D makes at most qExp queries to its Exp oracle, qEnc queries to its ChSend oracle, qDec

queries to its ChRec oracle, and the same number of queries as A to oracles RatSend, RatRec.

Adversary N makes at most max(qRatSend, qRatRec) queries to its New oracle, qEnc queries to its

Enc oracle, and qDec queries to its Dec oracle. Each of D, N has a running time approximately

that of A.

The proof is given below. It proceeds in two steps, first using the KIND-security of RKE and

then using the MAE-security of SE. Recall that our goal is to show that adversary A playing RAE

security game against RE is unable to distinguish between the real world (when oracles Enc and

Dec return real encryptions and decryptions) and the random world (when oracle Enc returns

random strings, and oracle Dec returns incorrect decryption symbol). In the first step of the

proof, we use the KIND-security of ratcheted key exchange scheme RKE to switch from using real

keys to random keys when calling oracles Enc and Dec in the real world of the RAE security

game. We note that oracles RatSend,RatRec,Exp will still operate on the real keys after the

first step, and the adversary D against KIND-security of RKE is able to simulate them using its

own oracles. At this point, the keys used to answer queries to oracles Enc and Dec (in the game

derived from the initial RAE security game) are random and independent of the keys used to

answer queries to oracles RatSend,RatRec,Exp. Thus for the second step of the proof, we can

build an adversary N against the MAE-security of SE that will generate its own set of keys for

ratcheted encryption scheme RE and use them to produce simulated answers for A’s oracle queries

to RatSend,RatRec,Exp. Adversary N will answer A’s oracle queries to Enc,Dec using the

oracles provided by the MAE game, and relay A’s output bit as the answer for its own security

game.

Proof of Theorem 5.1: Consider games G0,G1 of Fig. 14. Lines not annotated with comments

are common to both games. Game G0 is equivalent to RAEA
RE, so

AdvraeRE,A = 2Pr[G0]− 1. (2)

Game G1 differs from game G0 by using uniformly random keys to answer Enc and Dec oracle

queries. Both games use real keys to answer Exp oracle queries.

First, we construct an adversary D against the KIND-security of RKE, as defined in Fig. 15.

Adversary D simulates adversary A as follows. A’s oracle queries to RatSend, RatRec and

Exp are directly answered by the corresponding D’s oracles (but D also does some bookkeeping

to maintain the states that are necessary for simulating other oracle queries). D simulates A’s
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Games G0–G1

(k, seks, (stks, stkr , sekr))←$ RKE.IKg
b←$ {0, 1} ; is ← 0 ; ir ← 0 ; ks ← k ; kr ← k
b′←$ARatSend,RatRec,Exp,Enc,Dec(stks) ; Return (b′ = b)

RatSend

r←$ RKE.RS ; (seks, ks,upd)← RKE.SKg(stks, seks; r)
auth[is]← upd ; is ← is + 1 ; Return upd

RatRec(upd)

(sekr , kr , acc)←$ RKE.RKg(stks, stkr , sekr ,upd, kr)
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1 ; Return true

Exp

If op[is] = “ch” then return ⊥
op[is]← “exp” ; Return (r, seks, ks)

Enc(n,m, h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is, n) ∈ U then return ⊥
c1 ← SE.Enc(ks, n,m, h) // G0

If rkey[is] =⊥ then rkey[is]←$ {0, 1}RKE.kl // G1

c1 ← SE.Enc(rkey[is], n,m, h) // G1

c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(is, n)}
S ← S ∪ {(is, n, cb, h)} ; Return cb

Dec(n, c, h)

If restricted then return SE.Dec(kr , n, c, h)
If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir , n, c, h) ∈ S then return ⊥
m← SE.Dec(kr , n, c, h) // G0

If rkey[ir ] =⊥ then rkey[ir ]←$ {0, 1}RKE.kl // G1

m← SE.Dec(rkey[ir ], n, c, h) // G1

If b = 1 then return m else return ⊥

Figure 14: Games G0,G1 for proof of Theorem 5.1.

queries to Enc and Dec by calling it’s own oracles ChSend and ChRec and using the received

challenge keys to encrypt and decrypt the messages itself. Let b denote the challenge bit in game

KINDD
RKE, and let b′ denote the corresponding guess made by the adversary D. We have Pr[G0] =

Pr[ b′ = 1 | b = 1 ] and Pr[G1] = Pr[ b′ = 1 | b = 0 ]. It follows that

Pr[G0]− Pr[G1] = AdvkindRKE,D. (3)

Next, we construct an adversaryN against the MAE-security of SE, as defined in Fig. 16. Adversary

N generates its own keys for the ratcheted key exchange scheme RKE, and uses them to answer A’s
queries to oracles RatSend, RatRec and Exp (as well as A’s queries to Dec in the case when

restricted is true). Furthermore, A’s calls to Enc and Dec are answered using the corresponding
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Adversary DRatSend,RatRec,Exp,ChSend,ChRec(stks)

b←$ {0, 1} ; is ← 0 ; ir ← 0
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(stks)
If (b′ = b) then return 1 else return 0

EncSim(n,m, h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
If (is, n) ∈ U then return ⊥
ks ← ChSend ; c1 ← SE.Enc(ks, n,m, h)
c0←$ {0, 1}RE.cl(|m|) ; U ← U ∪ {(is, n)}
S ← S ∪ {(is, n, cb, h)} ; Return cb

DecSim(n, c, h)

If restricted then
kr ← ChRec ; Return SE.Dec(kr , n, c, h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
If (ir , n, c, h) ∈ S then return ⊥
kr ← ChRec ; m← SE.Dec(kr , n, c, h)
If b = 1 then return m else return ⊥

RatSendSim

upd ← RatSend
auth[is]← upd
is ← is + 1
Return upd

RatRecSim(upd)

success← RatRec(upd)
If success then

u0 ← (op[ir ] = “exp”)
u1 ← (upd = auth[ir ])
If u0 then restricted← true
If u1 then restricted← false
ir ← ir + 1

Return success

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return Exp

Figure 15: Adversary D for proof of Theorem 5.1.

Adversary NNew,Enc,Dec

(k, seks, (stks, stkr , sekr))←$ RKE.IKg
v ← 0 ; is ← 0 ; ir ← 0 ; ks ← k ; kr ← k
b′←$ARatSendSim,RatRecSim,ExpSim,EncSim,DecSim(stks)
Return b′

RatSendSim

r←$ RKE.RS ; z ← RKE.SKg(stks, seks; r)
(seks, ks,upd)← z ; auth[is]← upd ; is ← is + 1
While v < is do
New ; v ← v + 1

Return upd

RatRecSim(upd)

(sekr , kr , acc)←$ RKE.RKg(stks, stkr , sekr ,upd, kr)
If not acc then return false
If op[ir ] = “exp” then restricted← true
If upd = auth[ir ] then restricted← false
ir ← ir + 1
While v < ir do

New ; v ← v + 1
Return true

ExpSim

If op[is] = “ch” then return ⊥
op[is]← “exp”
Return (r, seks, ks)

Enc(n,m, h)

If op[is] = “exp” then return ⊥
op[is]← “ch”
Return Enc(is, n,m, h)

Dec(n, c, h)

If restricted then
Return SE.Dec(kr , n, c, h)

If op[ir ] = “exp” then return ⊥
op[ir ]← “ch”
Return Dec(ir , n, c, h)

Figure 16: Adversary N for proof of Theorem 5.1.

oracles that are provided to N in game MAE. We have Pr[G1] = MAEN
SE, so

Advmae
SE,N = 2Pr[G1]− 1. (4)

The theorem statement follows from equations (2)–(4).
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Extensions. We defined our encryption schemes to be one-sided in both communication (meaning

that the messages are assumed to be sent only in one direction, from the sender to the receiver),

and in security (only protecting against the exposure of the sender’s secrets). It would be useful

to consider two-sided communication (but still one-sided security). In our model the sender and

the receiver already share the same key, but one would need to update the security game to allow

using either key for encryption and decryption.

An important goal in studying ratcheted encryption is to model the Double Ratchet algo-

rithm [19, 15] used in multiple real-world messaging applications, such as in WhatsApp [25] and in

the Secret Conversations mode of Facebook Messenger [16]. This work models the asymmetric layer

of key ratcheting, whereas the real-world applications also have a second layer of key ratcheting

that happens in a symmetric setting. In our model, this can be possibly achieved by using the

output keys of ratcheted key exchange to initialize a forward-secure symmetric encryption scheme.

We do not capture this possibility; both the syntax and the security definitions would need to be

significantly extended.
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A Oracle Diffie-Hellman with Exposures in ROM

In this section we justify the plausibility of the Oracle Diffie-Hellman with Exposures (ODHE)

assumption that was introduced in Section 3. We used ODHE to prove the security of our ratcheted

key exchange scheme in Section 4.4. We now show that the ODHE assumption reduces to the Strong

Computational Diffie-Hellman (SCDH) assumption when the hash function in the former is modeled

as the random oracle.

We do the reduction in two steps. We introduce the Strong Computational Diffie-Hellman with

Exposures (SCDHE) assumption and use it as an intermediate assumption. In the first step, we

show that ODHE reduces to SCDHE when the hash function in ODHE is modeled as the random

oracle. In the second step, we show that SCDHE reduces to SCDH. We provide two different

reductions for the second step. Our first reduction uses a standard index guessing proof and thus

creates a factor q loss in the advantage. Our second reduction avoids this multiplicative advantage

loss by defining a “rewinding” adversary that uses the self-reducibility of Diffie-Hellman problems.

We now define the necessary assumptions and state two alternative theorems as outlined above.

Random Oracle Model. In the first step of our reduction we will work in the random oracle model

(ROM) [4], modeling a hash function as the random oracle. The random oracle RO models a truly

random function and is defined as follows:

RO(z, κ)

If T [z, κ] = ⊥ then T [z, κ]←$ {0, 1}κ
Return T [z, κ]

It takes a string z ∈ {0, 1}∗ and an output length κ ∈ N as input, to return an element from {0, 1}κ.
We prove our claims for a hash function that simply evaluates the random oracle on its inputs. We

now extend the ODHE assumption from Section 3 to the random oracle model.

Oracle Diffie-Hellman with Exposures in ROM assumption. Let G be a cyclic group of order p ∈ N,
and let G∗ denote the set of its generators. Let H be a function family such that H.In = {0, 1}∗.
Consider game ODHER of Fig. 17 associated to G,H and an adversary O, where O is required

to call oracle Up at least once prior to making any oracle queries to Ch and Exp. This game is

similar to the game ODHE from Section 3, except that it provides adversary O and hash function

H with an access to the random oracle RO. The advantage of O in breaking the ODHER security

of G,H is defined as AdvodherG,H,O = 2Pr[ODHERO
G,H]− 1.

Strong Computational Diffie-Hellman assumption. Let G be a cyclic group of order p ∈ N, and let G∗

denote the set of its generators. Consider game SCDH of Fig. 18, associated to group G and to

an adversary S. Adversary S receives g, gx, gy as input, where g is a group generator and gx, gy

are random group elements for some secret values x, y. It is also provided with an oracle DH that

takes arbitrary group elements X,Z and returns whether Xy = Z. The adversary wins the game if

it can compute the value of gxy. The advantage of S in breaking the SCDH security of G is defined

as AdvscdhG,S = Pr[SCDHS
G]. The SCDH assumption was originally defined in [1].

Strong Computational Diffie-Hellman with Exposures assumption. Let G be a cyclic group of order

p ∈ N, and let G∗ denote the set of its generators. Consider game SCDHE of Fig. 18, associated to

groupG and to an adversary B. Adversary B receives g, gy as input, where g is a group generator and

gy is a random group element for some secret value y. It is also provided with oracles DH,Up,Exp

defined as follows. The DH oracle is identical to the one from the SCDH game; it takes arbitrary
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Game ODHERO
G,H

b←$ {0, 1} ; hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; v ← −1
b′←$OUp,Ch,Exp,Hash,RO(hk, g, gy) ; Return (b′ = b)

Up

op← ε ; v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v, s, gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch ← Sch ∪ {(v, s, gx[v])} ; e← gx[v]·y

If mem[v, s, e] =⊥ then mem[v, s, e]←$ {0, 1}H.ol

r1 ← H.EvRO(hk, v ∥ s ∥ e) ; r0 ← mem[v, s, e] ; Return rb

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s,X)}
Return H.EvRO(hk, i ∥ s ∥Xy)

RO(z, κ)

If T [z, κ] = ⊥ then T [z, κ]←$ {0, 1}κ
Return T [z, κ]

Figure 17: Game defining Oracle Diffie-Hellman with Exposures in ROM assumption for G,H.

Game SCDHS
G

g←$ G∗ ; y←$ Zp ; x←$ Zp

Z←$ SDH(g, gx, gy)

Return (Z = gxy)

DH(X,Z)

Return (Xy = Z)

Game SCDHEB
G

g←$ G∗ ; y←$ Zp ; v ← −1
(j, Z)←$ BDH,Up,Exp(g, gy)

valid← (0 ≤ j ≤ v) and (op[j] ̸= “exp”)

Return valid and (Z = gx[j]·y)

DH(X,Z)

Return (Xy = Z)

Up

v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Exp

op[v]← “exp” ; Return x[v]

Figure 18: Games defining Strong Computational Diffie-Hellman assumption in group G, and
Strong Computational Diffie-Hellman with Exposures assumption in group G.

group elements X,Z and returns whether Xy = Z. The update oracle Up generates a new random

group exponent x[v] and returns gx[v], where v is a counter that enumerates all challenge exponents

(indexed from 0). The expose oracle Exp returns x[v] (we do not require that B calls Up prior

to its first call to Exp, meaning that B is allowed to expose the unitialized value at the location

−1 of map x). The adversary wins the game if it returns a pair (j, Z) such that Z = gx[j]·y and

x[j] was not exposed. The advantage of B in breaking the SCDHE security of G is defined as

AdvscdheG,B = Pr[SCDHEB
G].
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Theorem statements. We prove the following theorems. They relate the advantage of an adversary

O against the ODHER security of G,H —where H is instantiated by the random oracle— to the

advantage of an adversary S against the SCDH security in G. The second theorem achieves a better

upper-bound for the advantage of O, but its proof is more involved and the constructed adversary

S has a worse running time.

We prove our claims for a function family H defined by H.EvRO(hk, s) = RO(hk ∥ s,H.ol) for

some H.ol ∈ N. Note that the evaluation algorithm of a function family is defined to be determin-

istic, whereas RO is a randomized procedure. For H to be well-defined, one has to be careful when

defining deterministic algorithms. For our purposes, a deterministic algorithms is one that takes

no random coins.

Theorem A.1 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family defined by H.EvRO(hk, s) = RO(hk ∥ s,H.ol) for some H.ol ∈ N. Let O
be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up oracle,

qCh queries to its Ch oracle, qHash queries to its Hash oracle, and qRO queries to its RO oracle.

Then there is an adversary S attacking the SCDH-security of G such that

AdvodherG,H,O ≤ qUp · AdvscdhG,S .

Adversary S makes at most qRO · (qCh + qHash) queries to its DH oracle. Its running time is

approximately that of O plus extra terms that are dominated by qRO · (qCh + qHash).

To prove this theorem, Appendix A.1 provides the following. First, it reduces ODHE to SCDHE

where the hash function in the former is modeled as the random oracle. Second, it reduces SCDHE

to SCDH in the standard model.

Theorem A.2 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family defined by H.EvRO(hk, s) = RO(hk ∥ s,H.ol) for some H.ol ∈ N. Let O
be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up oracle, qCh

queries to its Ch oracle, qExp queries to its Exp oracle, qHash queries to its Hash oracle, and qRO

queries to its RO oracle. Let u ∈ N. Then there is an adversary Su attacking the SCDH-security

of G such that

AdvodherG,H,O ≤ AdvscdhG,Su
+ qUp · 2−u.

Let q0 = qRO · (qCh + qHash) and q1 = 1 + u · qUp. Adversary Su makes at most q0 · q1 queries

to its DH oracle. Its running time is approximately q1 times that of O plus extra terms that are

dominated by q0 · q1.

In Appendix A.2 we provide an alternative reduction from SCDHE to SCDH that is more involved

than the one in Appendix A.1. The claims in Theorem A.2 are implied by the random oracle

reduction from ODHE to SCDHE in Appendix A.1, along with the improved reduction from SCDHE

to SCDH in Appendix A.2.

A.1 ODHE reduction to SCDH in ROM

We now state and prove two lemmas that together imply the claim in Theorem A.1. The first

lemma reduces from ODHE to SCDHE in ROM, by showing how to use any ODHER adversary O
to construct an SCDHE adversary B. Then the second lemma reduces from any SCDHE adversary

B to an adversary S against SCDH.
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Games G0,G1

hk←$ {0, 1}H.kl ; g←$ G∗ ; y←$ Zp ; v ← −1
b′←$OUp,Ch,Exp,Hash,RO(hk, g, gy) ; Return (b′ = 1)

Up

op← ε ; v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Ch(s)

If (op = “exp”) or ((v, s, gx[v]) ∈ Shash) then return ⊥
op← “ch” ; Sch ← Sch ∪ {(v, s, gx[v])} ; e← gx[v]·y

If mem[v, s, e] =⊥ then mem[v, s, e]←$ {0, 1}H.ol

z ← hk ∥ v ∥ s ∥ e ; κ← H.ol
If (T [z, κ] ̸= ⊥) then
bad← true
mem[v, s, e]← T [z, κ] // G1

Return mem[v, s, e]

Exp

If op = “ch” then return ⊥
op← “exp” ; Return x[v]

Hash(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s,X)}
Return RO(hk ∥ i ∥ s ∥Xy,H.ol)

RO(z, κ)

If T [z, κ] = ⊥ then T [z, κ]←$ {0, 1}κ
hk′ ∥ i ∥ s ∥ e← z

If (hk′ = hk) and (mem[i, s, e] ̸= ⊥) and (κ = H.ol) then
bad← true
T [z, κ]← mem[i, s, e] // G1

Return T [z, κ]

Figure 19: Games G0,G1 for proof of Lemma A.3.

Reducing ODHE to SCDHE in ROM. The first intermediate lemma is as follows.

Lemma A.3 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let H be a function family defined by H.EvRO(hk, s) = RO(hk ∥ s,H.ol) for some H.ol ∈ N. Let O
be an adversary attacking the ODHER-security of G,H that makes qUp queries to its Up oracle,

qCh queries to its Ch oracle, qExp queries to its Exp oracle, qHash queries to its Hash oracle, and

qRO queries to its RO oracle. Then there is an adversary B attacking the SCDHE-security of G
such that

AdvodherG,H,O ≤ AdvscdheG,B .

Adversary B makes qUp queries to its Up oracle, qExp queries to its Exp oracle, and at most

qRO · (qCh+ qHash) queries to its DH oracle. Its running time is approximately that of O plus extra

terms that are dominated by qRO · (qCh + qHash).

Proof of Lemma A.3: Consider games G0,G1 of Fig. 19. Lines not annotated with comments
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are common to both games. Let bodher be the challenge bit in game ODHERO
G,H, and let b′ be the

corresponding guess made by the adversary O. We claim that Pr[G1] = Pr [ b′ = 1 | bodher = 1 ] and

Pr[G0] = Pr [ b′ = 1 | bodher = 0 ], meaning that

AdvodherG,H,O = Pr[G1]− Pr[G0]. (5)

Compared to the code of ODHERO
G,H, games G0,G1 replace calls to H.Ev with explicit calls to the

random oracle (according to the construction of H). The code of oracles Ch and RO was also

changed. In G0 procedure Ch always returns elements from map mem, initialized with uniformly

random values that are independent of the random oracle. In G1 oracles Ch and RO now in-

clude conditions that ensure consistency between the return values of these functions if they are

called with appropriately matching inputs. It follows the behavior we expect when b = 1 in game

ODHERO
G,H because the random oracle would be used to compute the output of Ch in this case.

Note that games G0 and G1 are identical until flag bad is set to true. By the fundamental lemma

of game playing [6], we have

Pr[G1]− Pr[G0] ≤ Pr[badG0 ], (6)

where Pr[badG0 ] denotes the probability of setting bad to true in game G0. We will build an

adversary B against the SCDHE security in G such that

Pr[badG0 ] = Pr[SCDHEB
G] = AdvscdheG,B . (7)

Combining Equation (5), Equation (6) and Equation (7) results in AdvodherG,H,O = Pr[G0] − Pr[G1] ≤
Pr[badG0 ] = AdvscdheG,B , which confirms the claim in the theorem statement.

The construction of adversary B is provided in Fig. 20. It simulates game ODHERO
G,H for adversary

O. The simulation is imperfect, but adversary O cannot determine that unless it can set bad flag

to true when playing in G0. Adversary B provides perfect simulation only until this event would

happen. Note that bad flag being set true corresponds to B being able to win in game SCDHEB
G,

so at that point B can just produce its own output and halt.

In order for the adversary O to set bad flag true in game G0, it has to do the following. It has to

call Ch(s) and RO(hk′ ∥ i ∥ s ∥ e,H.ol) such that

(hk, v, s, gx[v]·y) = (hk′, i, s, e)

and such that Ch(s) ̸=⊥, where v is the counter in game G0 when the call to Ch(s) is made. This

means that adversary O must be able to compute e = gx[v]·y from just X = gx[v] (returned by Up)

and Y = gy (passed as input to adversary). Note that Ch(s) ̸=⊥ means that adversary can not

call Exp or Hash to trivially deduce this value (neither before calling Up, nor after calling it).

The latter also means that adversary must make the call to RO(hk′ ∥ i ∥ s ∥ e,H.ol) itself; it can not

implicitly manipulate Hash into making a call to RO with these arguments.

Adversary B simulates oracles Up, Exp for adversary O by using its own oracles with the corre-

sponding names. It simulates oracles Ch, Hash, RO for O by mapping their inputs to uniformly

random values on its own. Adversary B cannot compute the value of e = gx[v]·y to simulate the

code of Ch, but it is unique for any choice of (hk, v, s), so B can map this tuple to a uniformly

random value without knowing e. Finally, for every tuple (hk, v, s) processed in Ch and every tuple

(hk′, i, s, e) processed in RO, adversary will use its DH oracle to check whether e = gx[v]·y. If this

equality holds, then B will win in its own game SCDHEB
G by returning (v, e).
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Adversary BDH,Up,Exp(g, Y )

hk←$ {0, 1}H.kl ; v ← −1
OUpSim,ChSim,ExpSim,HashSim,ROSim(hk, g, Y )
Return (j, Zj)

UpSim

op← ε ; v ← v + 1 ; Xcur ← Up ; Return Xcur

ChSim(s)

If (op = “exp”) or ((v, s,Xcur) ∈ Shash) then
Return ⊥

op← “ch” ; Sch ← Sch ∪ {(v, s,Xcur)}
If mem[v, s,Xcur ] =⊥ then
mem[v, s,Xcur ]←$ {0, 1}H.ol

For each (hk′, i′, s′, Z) ∈ SRO do
If (hk′ ∥ i′ ∥ s′ = hk ∥ v ∥ s) and DH(Xcur , Z) then
j ← v ; Zj ← Z

Return mem[v, s,Xcur ]

ExpSim

If op = “ch” then return ⊥
op← “exp” ; x← Exp ; Return x

HashSim(i, s,X)

If (i, s,X) ∈ Sch then return ⊥
If i = v then Shash ← Shash ∪ {(i, s,X)}
SH ← SH ∪ {(i, s,X)}
If TH [i, s,X] = ⊥ then
TH [i, s,X]←$ {0, 1}H.ol

For each (hk′, i′, s′, Z) ∈ SRO do
If (hk′ ∥ i′ ∥ s′ = hk ∥ i ∥ s) and DH(X,Z) then

z ← hk ∥ i ∥ s ∥Z ; κ← H.ol
If T [z, κ] ̸=⊥ then TH [i, s,X]← T [z, κ]

Return TH [i, s,X]

ROSim(z, κ)

hk′ ∥ i ∥ s ∥Z ← z
SRO ← SRO ∪ {(hk′, i, s, Z)}
If T [z, κ] = ⊥ then
T [z, κ]←$ {0, 1}κ
If κ = H.ol then
For each (i′, s′, X) ∈ SH do

If (hk ∥ i′ ∥ s′ = hk′ ∥ i ∥ s) and DH(X,Z) then
T [z, κ]← TH [i, s,X]

For each (i′, s′, X) ∈ Sch do
If (hk ∥ i′ ∥ s′ = hk′ ∥ i ∥ s) and DH(X,Z) then
j ← v ; Zj ← Z

Return T [z, κ]

Figure 20: Adversary B for proof of Lemma A.3.

In addition to the above, adversary B must also maintain consistency between responses from

oracles Hash and RO. It does that using its DH oracle in a similar way as above, by checking

whether any matching queries (same hk, i, and s) to these oracles satisfy Xy = Z. Whenever this
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happens, it makes sure that the values returned by these two oracles are consistent; otherwise, it

can keep returning uniformly random strings.

Note that for each pair of calls that adversary O makes to RO and Ch (resp. to RO and Hash),

adversary B will make at most one query to its DH oracle (during the later of the two calls).

Therefore, adversary B makes at most qRO · (qCh + qHash) queries to its DH oracle. The running

time of adversary B is roughly that of adversary O, along with the extra computation that is

required to evaluate the qRO · (qCh + qHash) conditions as per above.

Reducing SCDHE to SCDH. The second intermediate lemma is as follows.

Lemma A.4 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators.

Let B be an adversary attacking the SCDHE-security of G that makes qDH queries to its DH oracle

and qUp queries to its Up oracle. Then there is an adversary S attacking the SCDH-security of G
such that

AdvscdheG,B ≤ qUp · AdvscdhG,S .

Adversary S makes at most qDH queries to its DH oracle and its running time is approximately

that of B.

Proof of Lemma A.4: We build an adversary S attacking the SCDH-security in G as follows:

Adversary SDH(g,XS , Y )

jS ←$ {0, . . . , qUp − 1} ; v ← −1
(j, Z)←$ BDHSim,UpSim,ExpSim(g, Y )

Return Z

DHSim(X,Z)

Return DH(X,Z)

UpSim

v ← v + 1 ; x←$ Zp ; X ← gx

If (v = jS) then X ← XS
Return X

ExpSim

If (v = jS) then return ⊥
Return x

Adversary S simulates game SCDHEG for adversary B, answering B’s calls to oracle DH using its

own DH oracle (it has the same functionality because S runs B with g, Y as input). Adversary S
chooses a random index jS between 0 and qUp − 1, representing its guess of which index j is going

to be returned by adversary B. It then uses XS as the challenge value to answer B’s call to oracle

Up when v = jS . It samples its own challenge exponents for the rest of the Up calls, meaning it is

also able to answer B’s calls to Exp whenever v ̸= jS . Adversary S is not able to properly simulate

the expose oracle for B when v = jS , but this is not important for our reduction because B could

not have won by returning j = jS after making such Exp call (it would set op[jS ] = “exp” in game

SCDHEG).

Let jB denote the index guessed by S in game SCDHS
G, and let jB denote the index returned by B

in game SCDHEB
G. For any j ∈ {0, 1, . . . , qUp − 1} we have

Pr
[
SCDHS

G | jS = j
]
≥ Pr[SCDHEB

G ∧ jB = j].

This is an inequality because it is possible that S wins in SCDHS
G by simulating B that does not

win in SCDHEB
G (e.g. this happens if B returns (j, Z) after calling Exp when v = j). We get the

following:

AdvscdhG,S = Pr[SCDHS
G]
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=

qUp−1∑
j=0

Pr[SCDHS
G|jS = j] · Pr[jS = j]

≥
qUp−1∑
j=0

Pr[SCDHEB
G ∧ jB = j] · 1

qUp

=
1

qUp
· Pr[SCDHEB

G]

=
1

qUp
· AdvscdheG,B

The claimed number of oracle queries and running time of S follows from its construction.

Proof of Theorem A.1: This theorem is a direct consequence of Lemma A.3 and Lemma A.4.

A.2 SCDHE reduction to SCDH with rewinding

In previous section we provided a reduction from ODHE to SCDH in ROM, by combining two

intermediate lemmas – Lemma A.3 and Lemma A.4. The latter lemma reduced SCDHE to SCDH

and incurred a multiplicative loss in advantage. We now use the self-reducibility property of Diffie-

Hellman to state and prove an alternative reduction from SCDHE to SCDH that avoids such

multiplicative loss. The new reduction is formalized as Lemma A.5 below. Combining Lemma A.5

with Lemma A.3 from the previous section will yield a more efficient overall reduction from ODHE

to SCDH in ROM, as stated in Theorem A.2 of Appendix A.

Outline of the new reduction. Recall that the SCDH adversary S used for the proof of Lemma A.4

attempts to simulate the provided SCDHE adversary B. Both adversaries take a challenge value

Y = gy as input for some secret uniformly random exponent y. Adversary S tries to guess which of

B’s queries to its oracle Up —returning some group element X = gx— will be used for constructing

B’s output value Z = gxy. The SCDH adversary then uses the challenge value XS = gxS from its

own game as the output of the chosen Up query, and answers every other Up query by sampling a

uniformly random exponent x itself and returning X = gx.

The new SCDH adversary Su for the reduction in this section will instead re-randomize its

challenge value XSu = gxSu in order to answer Up queries for the simulated SCDHE adversary B.
To answer an oracle Up query, adversary Su will occasionally choose a uniformly random exponent

t and return a uniformly random-looking group element XSu · gt. If the SCDHE adversary wins

its game by returning Z = (XSu · gt)y then the SCDH adversary can recover gxSuy by computing

Z · Y −t.

However, if adversary Su generates its answer to Up query as above, then it cannot answer B’s
subsequent query to its Exp oracle, because Su does not know the corresponding exponent xSu · t.
To avoid this problem, adversary Su for every call to Up guesses whether or not B will call Exp

to recover the corresponding exponent. If adversary Su expects a call to Exp, then it answers Up

query using X = gx for a uniformly random exponent x; otherwise, it answers Up query using

XSu · gt for a uniformly random exponent t as described above. If Su determines that its guess was

wrong, it “rewinds” adversary B back to the corresponding state and attempts to guess again.
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Game SCDHEB
G

g←$ G∗ ; y←$ Zp ; v ← −1
(proc, args, σ, done)←$ B1(g, gy)
While not done do

If proc = “dh” then

(X,Z)← args ; out← DH(X,Z)

If proc = “up” then out← Up

If proc = “exp” then out← Exp

(proc, args, σ, done)←$ B2(σ, out)
(j, Z)← σ

Return (0 ≤ j ≤ v) and (op[j] ̸= “exp”) and (Z = gx[j]·y)

DH(X,Z)

Return (Xy = Z)

Up

v ← v + 1 ; x[v]←$ Zp ; Return gx[v]

Exp

op[v] = “exp” ; Return x[v]

Figure 21: Game defining SCDHE assumption in group G. This non-black-box definition extends
that of Fig. 18 to require that adversary B = (B1,B2) halts after every oracle call.

Alternative definition of SCDHE. We now redefine the SCDHE security in group G in a way that

allows to “rewind” the adversary playing in this game. Let G be a cyclic group of order p ∈ N, and
let G∗ denote the set of its generators. Consider game SCDHE of Fig. 21, associated to group G and

to an adversary B = (B1,B2). As opposed to the original definition from Fig. 18, now adversary

B must temporarily halt and output its state whenever it calls one of its oracles. Specifically,

adversary B is required to output a tuple (proc, args, σ, done) where proc is the name of the oracle

it wants to call, args is the argument string it wants to pass to that oracle, σ is the state of B, and
done is a boolean flag indicating whether B has finished playing the game (in which case σ will

be interpreted as its final output). The advantage of B in breaking the SCDHE security of G is

defined as AdvscdheG,B = Pr[SCDHEB
G]. We emphasize that σ represents all of the state being stored

by B so “rewinding” B will simply consist of calling B again on a prior value of σ.

Reducing SCDHE to SCDH using rewinding. The rewinding-based lemma is as follows.

Lemma A.5 Let G be a cyclic group of order p ∈ N, and let G∗ denote the set of its generators. Let

B be an adversary attacking the SCDHE-security of G that makes qDH queries to its DH oracle and

qUp queries to its Up oracle. Let u ∈ N. Then there is an adversary Su attacking the SCDH-security

of G such that

AdvscdheG,B ≤ AdvscdhG,Su
+ qUp · 2−u.

Let q∗ = 1 + u · qUp. Adversary Su makes at most q∗ · qDH queries to its DH oracle. Its running

time is approximately q∗ times that of B.

The expected number of oracle queries and running time of adversary Su are better than the worst-

case guarentees provided above. The expected number of oracle queries to DH made by adversary

Su is about twice that of B. The expected running time of adversary Su is approximately twice

40



Adversary SDH
u (g,XSu , Y )

v ← −1 ; bg ← 1 ; (proc, args, σ, done)←$ B1(g, Y )
While not done do
If proc = “dh” then
(X,Z)← args ; out← DH(X,Z)

If proc = “up” then
If (bg = 0) and (op[v] ̸= “exp”) then Revert
maxErr← u ; lastSave← σ ; v ← v + 1
//label//

bg←$ {0, 1} ; t[v]←$ Zp ; out← X
bg
Su
· gt[v]

If proc = “exp” then
If (bg = 1) and (v ̸= −1) then Revert
op[v]← “exp” ; out← t[v]

(proc, args, σ, done)←$ B2(σ, out)
If (bg = 0) and (op[v] ̸= “exp”) then Revert
(j, Z)← σ ; Return Z · Y −t[j]

Procedure Revert

maxErr← maxErr − 1
If maxErr < 0 then abort
σ ← lastSave
goto label

Figure 22: Adversary Su for proof of Lemma A.5.

that of B.

Proof of Lemma A.5: We build an adversary Su attacking the SCDH-security in G, as defined

in Fig. 22. We use abort as a shorthand for Su halting execution and returning an output value

(j, Z) that guarantess that Su loses in game SCDHSu
G , for example (−1, g). As a part of adversary

Su, we define an auxiliary procedure Revert that contains the code for rewinding the simulated

adversary B. It holds no special meaning in our security proof; its only purpose is to avoid writing

duplicate code at every position that calls rewinding, essentially simplifying the definition of Su.

Adversary Su simulates the SCDHEG game for adversary B, according to the definition of SCDHE

in Fig. 21. Every time adversary B makes a call to oracle Up, adversary Su samples a random bit

bg to determine how to answer this query. If bg = 1 then Up will return XSu · gt[v] for a uniformly

random exponent t[v] ∈ Zp. If bg = 0 then Up will return just gt[v] for a uniformly random exponent

t[v] ∈ Zp. Furthermore, it is assumed that B will call oracle Exp prior to making its next query to

oracle Up if and only if bg = 0.

The goal here is that adversary Su must be capable of answering Exp query whenever this query

is made. Note that Su can only answer it if bg = 0, unless it can compute the discrete logarithm of

XSu in group G. On the other hand, for any challenge value returned by Up that was not exposed,

adversary Su must ensure that it was generated as XSu ·gt[v] for a known value t[v]. This guarantees

that if B wins in game SCDHEB
G by returning some (j, Z) such that Z = Xy

Su
·gt[j]·y, then adversary

Su will always be able to compute Z · Y −t[j] = Xy
Su

to win in game SCDHSu
G .

Every time adversary B makes a call to oracle Up, adversary Su checks whether its previous guess

about B’s behavior (as reflected by bg) was correct. If the guess was correct, then Su saves B’s
current state σ in variable lastSave and proceeds to make a new guess about B’s future behavior.

If the guess was wrong, then Su “rewinds” adversary B back to the state it had during its previous

call to oracle Up, by restoring B’s state from the current value of lastSave and calling goto label

to move the instruction pointer to //label//; adversary Su then makes a new attempt to guess

B’s behavior, sampling a random bit bg. We ensure that Su eventually halts by allowing it to make

at most maxErr wrong guesses in a row. If Su exceeds this number of wrong guesses, it immediately
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Games G0–G1

g←$ G∗ ; y←$ Zp ; x←$ Zp ; v ← −1 ; bg ← 1
(proc, args, σ, done)←$ B1(g, gy)
While not done do
If proc = “dh” then
(X,Z)← args ; out← (Xy = Z)

If proc = “up” then
If (bg = 0) and (op[v] ̸= “exp”) then Revert
maxErr← u ; lastSave← σ ; v ← v + 1
//label//
bg←$ {0, 1} ; t[v]←$ Zp ; out← gx·bg · gt[v]

If proc = “exp” then
If (bg = 1) and (v ̸= −1) then Revert
op[v]← “exp” ; out← t[v]

(proc, args, σ, done)←$ B2(σ, out)
If (bg = 0) and (op[v] ̸= “exp”) then Revert
(j, Z)← σ
Return (Z · g−t[j]·y = gxy)

Procedure Revert

maxErr← maxErr − 1
If maxErr < 0 then

badv ← true
abort // G0

(v, σ)← lastSave
goto label

Figure 23: Games G0,G1 for proof of Lemma A.5.

calls abort to halt its execution.

We now analyze the success probability of adversary Su. Consider games G0,G1 of Fig. 23. Lines

not annotated with comments are common to both games. Game G0 is equivalent to SCDHSu
G ,

with the code of S inserted, and simplified to reference gx instead of XSu . It follows that

Pr[G0] = Pr[SCDHSu
G ]. (8)

Game G1 is equivalent to G0, except that it never calls abort. Let Pr[bad
G0 ] denote the probability

that a badv flag is set true in game G0 for some v ∈ {0, 1, . . . , qUp − 1}. Note that abort is only

called when this happens, and the two games are identical-until-bad. According to the fundamental

lemma of game playing [6], we have

Pr[G1] ≤ Pr[G0] + Pr[badG0 ]. (9)

Note that adversary B always gets uniformly random group elements in response to its oracle Up

queries, regardless of the value of bg. Meaning that regardless of the behavior of B the probability

that bg is chosen correctly at any point is exactly 1/2. It follows that the output distribution of B
induced in Pr[G1] is exactly that same as that induced in SCDHEB

G. It follows that the condition

Z · g−t[j]·y = gxy in game Pr[G1] will hold whenever (j, Z) would have been a correct answer in

game SCDHE. This gives us

Pr[SCDHEB
G] ≤ Pr[G1]. (10)
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Game UFORGEM
RKE

(k, seks, (stks, stkr , sekr))←$ RKE.IKg
ks ← k ; kr ← k ; upd←$MRatchet(stks)

(sekr , kr , acc)←$ RKE.RKg(stks, stkr , sekr ,upd, kr)

Return acc

Ratchet

prev ← (r, seks, ks) ; r←$ RKE.RS
(seks, ks,upd)← RKE.SKg(stks, seks; r)

(sekr , kr , acc)←$ RKE.RKg(stks, stkr , sekr ,upd, kr)

Return (prev ,upd)

Figure 24: Game update unforgeability of ratcheted key exchange scheme RKE.

Finally, we now bound the probability that a bad flag is set in G0 by the following inequalities.

Pr[badG0 ] ≤
qUp−1∑
v=0

Pr[badG0
v ] ≤

qUp−1∑
v=0

2−u = qUp · 2−u. (11)

The first inequality comes from a simple union bound. To see the second inequality note that for

any particular badv to be set true the guess bit bg must be incorrect u times in a row, which happens

with probability 2−u.

Finally, the theorem statement follows from Equations (8)–(11):

Pr[SCDHEB
G] ≤ Pr[SCDHSu

G ] + qUp · 2−u.

The claimed number of oracle queries and the worst-case running time of Su follows from the fact

that Su will run B once, and depending on B’s behavior it will rewind B at most u · qUp times. In

the worst case, each rewinding will reset B back to the very beginning of its execution and it would

have to be run all over again.

Proof of Theorem A.2: This theorem is a direct consequence of Lemma A.3 and Lemma A.5.

B Necessity of authenticaticating the update information

In this section we show that if an attacker can forge update information upd for a ratcheted key

exchange scheme, then it can be used to break the KIND security of this scheme. Here, a forged

update information is one that was not produced by the sender, but would still be accepted by the

receiver. This result could equivalently be stated as reducing the UFORGE security (that we are

about to formally define) of a ratcheted key exchange scheme to its KIND security, meaning that

UFORGE is a property that is a necessary condition for KIND security.

Update unforgeability. Informally, a ratcheted key exchange scheme is secure against update forgeries

if an adversary, given access to several samples of update information and to all sender’s secrets

prior to the generation of these samples, cannot generate its own update information that will be

accepted by the receiver. Conversely, an adversary is good at update forgeries if it can do this.

Consider game UFORGE of Fig. 24, associated to a ratcheted key exchange scheme RKE and

an adversary M. The advantage of M at breaking the UFORGE security of RKE is given by
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AdvuforgeRKE,M = Pr[UFORGEM
RKE].

Adversary M is given the sender’s static key and is provided with an access to an oracle

Ratchet that performs a ratcheted key update for both the sender and the receiver. Oracle

Ratchet returns the sender’s secrets from before ratcheting the keys, along with the update

information upd that was used for ratcheting receiver’s key. Adversary M can call its oracle an

arbitrary number of times, and its goal is to eventually generate its own update information upd

that is accepted by the receiver. Note that the first call to oracle Ratchet returns (r, seks, ks)

where r is not explicitly initialized; according to our notation conventions from Section 2, it is

implicitly assumed to be initialized with 0.

Breaking KIND using an update forgery. We now show that any adversary M that is successful at

attacking the UFORGE security of a ratcheted key exchange scheme RKE can be used to build an

adversary D that is successful at attacking the KIND security of RKE.

Theorem B.1 Let RKE be a ratcheted key exchange scheme. LetM be an adversary attacking the

UFORGE-security of RKE that makes qRatchet queries to its Ratchet oracle. Then there is an

adversary D attacking the KIND-security of RKE such that

AdvkindRKE,D =

(
1

2
− 1

2RKE.kl+1

)
· AdvuforgeRKE,M.

Adversary D makes at most qRatchet + 1 queries to each of its RatSend, RatRec, and Exp

oracles. It makes one query to each of its ChSend and ChRec oracles. Its running time is

approximately that ofM.

The starting idea for the KIND adversary D is to cause the receiver to update its keys with update

information upd that was not generated by the sender. It does that by calling its oracle RatRec

on update information upd that it learns from UFORGE adversary M. Then (after another

call to RatSend) oracles ChSend and ChRec will presumably return differing keys in the “real

world” (b = 1) and matching keys in the “random world” (b = 0). Comparing these keys gives a

straightforward attack. We note that this attack does not require D to call Exp right before calling

oracles RatSend, ChSend, and ChRec. Hence the restricted flag is false at the time when these

challenge oracles are called.

Unfortunately we cannot prove that this attack —as outlined above— is successful for an

arbitrary RKE scheme. The difficulty stems from the fact that RKE will not necessarily generate

non-matching values in the “real world”. For “natural” ratcheted key exchange schemes it seems

highly unlikely that keys generated by the two challenge oracles in the “real world” would match.

However, rigorously proving this claim is hard.

We will augment the attack idea described above to call Exp with probability 1/2 prior to

calling oracles RatSend, ChSend, and ChRec. When Exp is called prior to this sequence of

calls, game KINDD
RKE sets restricted to true. Depending on whether Exp is called, adversary D is

also defined to flip its output bit.

In the “real world” (b = 1) of game KINDD
RKE, the output of the challenge oracles is the same

regardless of whether restricted is true. So when b = 1 the interaction of D with its challenge oracles

in game KINDD
RKE does not change depending on whether Exp was called (which happens with

probability 1/2), but its output bit is nonetheless flipped. In this case adversary D will succeed to

guess the challenge bit (meaning it will return b′ = 1) with probability 1/2.

In constract, calling Exp in the “random world” (b = 0) of game KINDD
RKE results in the

challenge oracles returning outputs that have different equality patterns. If Exp was called, then
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restricted is true and adversary will get different keys with high probability in the “random world”,

because ChSend returns a uniformly random key and ChRec returns a real key. If Exp was not

called, then restricted is false and adversary will always get same keys from the challenge oracles

in the “random world”. By flipping adversary’s output value in one of these two cases, we get an

adversary that guesses the correct challenge bit (meaning it returns b′ = 0) with probability close

to 1. This is sufficient to distinguish between the “real world” and the “random world”.

Proof of Theorem B.1: We build an adversary D attacking the KIND-security of RKE as follows:

Adversary DRatSend,RatRec,Exp,ChSend,ChRec(stks)

upd←$MRatchetSim(stks) ; bD←$ {0, 1}
If (bD = 1) then Exp

accD ← RatRec(upd)

If not accD then return 1

RatSend ; ks ← ChSend ; kr ← ChRec

If (ks = kr) then return bD else return 1− bD

RatchetSim

prev ← Exp

upd ← RatSend

RatRec(upd)

Return (prev , upd)

Adversary D first uses adversary M to generate forged update information upd (the simulation

of M’s oracle RatchetSim is straightforward). Then D samples a bit bD to decide whether it

should make a call to Exp before proceeding. It then calls RatRec with update information upd

to derive key kr (immediately returning 1 if this update fails), calls RatSend to derive what would

have been the “corresponding” key ks, and finally calls both challenge oracles to get ks and kr . If

ks = kr then D returns bD as its output, otherwise it returns 1− bD.

Consider game KINDD
RKE. Let b denote the challenge bit in this game. Let bD and accD be the

values computed by adversary D playing in this game. Then the following will hold:

Pr[KINDD
RKE | b = 1, bD = 1, accD ] = 1− Pr[KINDD

RKE | b = 1, bD = 0, accD ], (12)

Pr[KINDD
RKE | b = 0, bD = 1, accD ] = 1− 2−RKE.kl, (13)

Pr[KINDD
RKE | b = 0, bD = 0, accD ] = 1. (14)

We now justify each of these equations. For this purpose, let ks and kr be the values computed by

adversary D playing in game KINDD
RKE.

To justify Equation (12), note that if b = 1 then the values of ks and kr that are compared by

D will both be generated by RKE in game KINDD
RKE, regardless of whether Exp has been called.

Thus the probability of ks and kr being equal does not depend on the bit bD. Assume that b = 1

and accD = true. If bD = 1 then D returns 1 (the correct value of b) whenever ks = kr . If bD = 0

then D returns 1 whenever ks ̸= kr . This implies the stated equality.

When b = 0 and bD = 1, the value of ks will have been chosen uniformly at random, but kr will

have been generated by RKE because the restricted flag will be set to true. Thus the probability of

them being equal is 2−RKE.kl. Assume that b = 0 and accD = true. If bD = 1 then D returns 0 (the

correct value of b) whenever ks ̸= kr . This implies Equation (13).

When b = 0 and bD = 0, the restricted flag will be false, so game KINDD
RKE forces ks and kr to be

the same random value. Assume that b = 0 and accD = true. If bD = 0 then D returns 0 (the

correct value of b) whenever ks = kr . This implies Equation (14).
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We now use Equations (12)–(14) to compute the conditional probability that D wins in game

KINDD
RKE, given that accD = true. The result is as follows:

Pr[KINDD
RKE | accD ] =

∑
c∈{0,1}

∑
d∈{0,1}

Pr[KINDD
RKE | b = c, bD = d, accD ] · 1

4

=
1

4
·
(
1 +

(
1− 2−RKE.kl

)
+ 1

)
=

1

4
·
(
3− 2−RKE.kl

)
. (15)

Note that adversary D setting accD = true while playing in game KINDD
RKE is equivalent to adver-

saryM winning in game UFORGEM
RKE. It follows that

Pr[accD] = AdvuforgeRKE,M. (16)

Furthermore, if accD = false then adversary D wins in game KINDD
RKE with probability 1/2 because

(prior to halting) it only queries oracles RatSend, RatRec, Exp that behave independently of

the challenge bit in game KINDD
RKE. We have

Pr[KINDD
RKE | ¬accD ] =

1

2
. (17)

Finally, we compute the advantage of adversary D from Equations (15)–(17) as follows:

AdvkindRKE,D = 2 · Pr[KINDD
RKE]− 1

= 2 · Pr[KINDD
RKE | accD ] · Pr[accD]

+ 2 · Pr[KINDD
RKE | ¬accD ] · Pr[¬accD]− 1

= 2 · 1
4
·
(
3− 2−RKE.kl

)
· AdvuforgeRKE,M + 2 · 1

2
· (1− AdvuforgeRKE,M)− 1

=

(
1

2
− 1

2RKE.kl+1

)
· AdvuforgeRKE,M.

The number of oracle queries and the running time that were claimed in the theorem statement

follow from the construction of adversary D.
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