***** PGN-SPEC ***** Standard: Portable Game Notation Specification and Implementation Guide Revised: 1994.03.12 Authors: Interested readers of the Internet newsgroup rec.games.chess Coordinator: Steven J. Edwards (send comments to [email protected]) 0: Preface From the Tower of Babel story: "If now, while they are one people, all speaking the same language, they have started to do this, nothing will later stop them from doing whatever they propose to do." Genesis XI, v.6, _New American Bible_ 1: Introduction PGN is "Portable Game Notation", a standard designed for the representation of chess game data using ASCII text files. PGN is structured for easy reading and writing by human users and for easy parsing and generation by computer programs. The intent of the definition and propagation of PGN is to facilitate the sharing of public domain chess game data among chessplayers (both organic and otherwise), publishers, and computer chess researchers throughout the world. PGN is not intended to be a general purpose standard that is suitable for every possible use; no such standard could fill all conceivable requirements. Instead, PGN is proposed as a universal portable representation for data interchange. The idea is to allow the construction of a family of chess applications that can quickly and easily process chess game data using PGN for import and export among themselves. 2: Chess data representation Computer usage among chessplayers has become quite common in recent years and a variety of different programs, both commercial and public domain, are used to generate, access, and propagate chess game data. Some of these programs are rather impressive; most are now well behaved in that they correctly follow the Laws of Chess and handle users' data with reasonable care. Unfortunately, many programs have had serious problems with several aspects of the external representation of chess game data. Sometimes these problems become more visible when a user attempts to move significant quantities of data from one program to another; if there has been no real effort to ensure portability of data, then the chances for a successful transfer are small at best. 2.1: Data interchange incompatibility The reasons for format incompatibility are easy to understand. In fact, most of them are correlated with the same problems that have already been seen with commercial software offerings for other domains such as word processing, spreadsheets, fonts, and graphics. Sometimes a manufacturer deliberately designs a data format using encryption or some other secret, proprietary technique to "lock in" a customer. Sometimes a designer may produce a format that can be deciphered without too much difficulty, but at the same time publicly discourage third party software by claiming trade secret protection. Another software producer may develop a non-proprietary system, but it may work well only within the scope of a single program or application because it is not easily expandable. Finally, some other software may work very well for many purposes, but it uses symbols and language not easily understood by people or computers available to those outside the country of its development. 2.2: Specification goals A specification for a portable game notation must observe the lessons of history and be able to handle probable needs of the future. The design criteria for PGN were selected to meet these needs. These criteria include: 1) The details of the system must be publicly available and free of unnecessary complexity. Ideally, if the documentation is not available for some reason, typical chess software developers and users should be able to understand most of the data without the need for third party assistance. 2) The details of the system must be non-proprietary so that users and software developers are unrestricted by concerns about infringing on intellectual property rights. The idea is to let chess programmers compete in a free market where customers may choose software based on their real needs and not based on artificial requirements created by a secret data format. 3) The system must work for a variety of programs. The format should be such that it can be used by chess database programs, chess publishing programs, chess server programs, and chessplaying programs without being unnecessarily specific to any particular application class. 4) The system must be easily expandable and scalable. The expansion ability must include handling data items that may not exist currently but could be expected to emerge in the future. (Examples: new opening classifications and new country names.) The system should be scalable in that it must not have any arbitrary restrictions concerning the quantity of stored data. Also, planned modes of expansion should either preserve earlier databases or at least allow for their automatic conversion. 5) The system must be international. Chess software users are found in many countries and the system should be free of difficulties caused by conventions local to a given region. 6) Finally, the system should handle the same kinds and amounts of data that are already handled by existing chess software and by print media. 2.3: A sample PGN game Although its description may seem rather lengthy, PGN is actually fairly simple. A sample PGN game follows; it has most of the important features described in later sections of this document. [Event "F/S Return Match"] [Site "Belgrade, Serbia JUG"] [Date "1992.11.04"] [Round "29"] [White "Fischer, Robert J."] [Black "Spassky, Boris V."] [Result "1/2-1/2"] 1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6 8. c3 O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15. Nb1 h6 16. Bh4 c5 17. dxe5 Nxe4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6 21. Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxe1+ 26. Qxe1 Kxf7 27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6 31. axb4 cxb4 32. Ra5 Nd5 33. f3 Bc8 34. Kf2 Bf5 35. Ra7 g6 36. Ra6+ Kc5 37. Ke1 Nf4 38. g3 Nxh3 39. Kd2 Kb5 40. Rd6 Kc5 41. Ra6 Nf2 42. g4 Bd3 43. Re6 1/2-1/2 3: Formats: import and export There are two formats in the PGN specification. These are the "import" format and the "export" format. These are the two different ways of formatting the same PGN data according to its source. The details of the two formats are described throughout the following sections of this document. Other than formats, there is the additional topic of PGN presentation. While both PGN import and export formats are designed to be readable by humans, there is no recommendation that either of these be an ultimate mode of chess data presentation. Rather, software developers are urged to consider all of the various techniques at their disposal to enhance the display of chess data at the presentation level (i.e., highest level) of their programs. This means that the use of different fonts, character sizes, color, and other tools of computer aided interaction and publishing should be explored to provide a high quality presentation appropriate to the function of the particular program. 3.1: Import format allows for manually prepared data The import format is rather flexible and is used to describe data that may have been prepared by hand, much like a source file for a high level programming language. A program that can read PGN data should be able to handle the somewhat lax import format. 3.2: Export format used for program generated output The export format is rather strict and is used to describe data that is usually prepared under program control, something like a pretty printed source program reformatted by a compiler. 3.2.1: Byte equivalence For a given PGN data file, export format representations generated by different PGN programs on the same computing system should be exactly equivalent, byte for byte. 3.2.2: Archival storage and the newline character Export format should also be used for archival storage. Here, "archival" storage is defined as storage that may be accessed by a variety of computing systems. The only extra requirement for archival storage is that the newline character have a specific representation that is independent of its value for a particular computing system's text file usage. The archival representation of a newline is the ASCII control character LF (line feed, decimal value 10, hexadecimal value 0x0a). Sadly, there are some accidents of history that survive to this day that have baroque representations for a newline: multicharacter sequences, end-of-line record markers, start-of-line byte counts, fixed length records, and so forth. It is well beyond the scope of the PGN project to reconcile all of these to the unified world of ANSI C and the those enjoying the bliss of a single '\n' convention. Some systems may just not be able to handle an archival PGN text file with native text editors. In these cases, an indulgence of sorts is granted to use the local newline convention in non-archival PGN files for those text editors. 3.2.3: Speed of processing Several parts of the export format deal with exact descriptions of line and field justification that are absent from the import format details. The main reason for these restrictions on the export format are to allow the construction of simple data translation programs that can easily scan PGN data without having to have a full chess engine or other complex parsing routines. The idea is to encourage chess software authors to always allow for at least a limited PGN reading capability. Even when a full chess engine parsing capability is available, it is likely to be at least two orders of magnitude slower than a simple text scanner. 3.2.4: Reduced export format A PGN game represented using export format is said to be in "reduced export format" if all of the following hold: 1) it has no commentary, 2) it has only the standard seven tag roster identification information ("STR", see below), 3) it has no recursive annotation variations ("RAV", see below), and 4) it has no numeric annotation glyphs ("NAG", see below). Reduced export format is used for bulk storage of unannotated games. It represents a minimum level of standard conformance for a PGN exporting application. 4: Lexicographical issues PGN data is composed of characters; non-overlapping contiguous sequences of characters form lexical tokens. 4.1: Character codes PGN data is represented using a subset of the eight bit ISO 8859/1 (Latin 1) character set. ("ISO" is an acronym for the International Standards Organization.) This set is also known as ECMA-94 and is similar to other ISO Latin character sets. ISO 8859/1 includes the standard seven bit ASCII character set for the 32 control character code values from zero to 31. The 95 printing character code values from 32 to 126 are also equivalent to seven bit ASCII usage. (Code value 127, the ASCII DEL control character, is a graphic character in ISO 8859/1; it is not used for PGN data representation.) The 32 ISO 8859/1 code values from 128 to 159 are non-printing control characters. They are not used for PGN data representation. The 32 code values from 160 to 191 are mostly non-alphabetic printing characters and their use for PGN data is discouraged as their graphic representation varies considerably among other ISO Latin sets. Finally, the 64 code values from 192 to 255 are mostly alphabetic printing characters with various diacritical marks; their use is encouraged for those languages that require such characters. The graphic representations of this last set of 64 characters is fairly constant for the ISO Latin family. Printing character codes outside of the seven bit ASCII range may only appear in string data and in commentary. They are not permitted for use in symbol construction. Because some PGN users' environments may not support presentation of non-ASCII characters, PGN game authors should refrain from using such characters in critical commentary or string values in game data that may be referenced in such environments. PGN software authors should have their programs handle such environments by displaying a question mark ("?") for non-ASCII character codes. This is an important point because there are many computing systems that can display eight bit character data, but the display graphics may differ among machines and operating systems from different manufacturers. Only four of the ASCII control characters are permitted in PGN import format; these are the horizontal and vertical tabs along with the linefeed and carriage return codes. The external representation of the newline character may differ among platforms; this is an acceptable variation as long as the details of the implementation are hidden from software implementors and users. When a choice is practical, the Unix "newline is linefeed" convention is preferred. 4.2: Tab characters Tab characters, both horizontal and vertical, are not permitted in the export format. This is because the treatment of tab characters is highly dependent upon the particular software in use on the host computing system. Also, tab characters may not appear inside of string data. 4.3: Line lengths PGN data are organized as simple text lines without any special bytes or markers for secondary record structure imposed by specific operating systems. Import format PGN text lines are limited to having a maximum of 255 characters per line including the newline character. Lines with 80 or more printing characters are strongly discouraged because of the difficulties experienced by common text editors with long lines. In some cases, very long tag values will require 80 or more columns, but these are relatively rare. An example of this is the "FEN" tag pair; it may have a long tag value, but this particular tag pair is only used to represent a game that doesn't start from the usual initial position. 5: Commentary Comment text may appear in PGN data. There are two kinds of comments. The first kind is the "rest of line" comment; this comment type starts with a semicolon character and continues to the end of the line. The second kind starts with a left brace character and continues to the next right brace character. Comments cannot appear inside any token. Brace comments do not nest; a left brace character appearing in a brace comment loses its special meaning and is ignored. A semicolon appearing inside of a brace comment loses its special meaning and is ignored. Braces appearing inside of a semicolon comments lose their special meaning and are ignored. *** Export format representation of comments needs definition work. 6: Escape mechanism There is a special escape mechanism for PGN data. This mechanism is triggered by a percent sign character ("%") appearing in the first column of a line; the data on the rest of the line is ignored by publicly available PGN scanning software. This escape convention is intended for the private use of software developers and researchers to embed non-PGN commands and data in PGN streams. A percent sign appearing in any other place other than the first position in a line does not trigger the escape mechanism. 7: Tokens PGN character data is organized as tokens. A token is a contiguous sequence of characters that represents a basic semantic unit. Tokens may be separated from adjacent tokens by white space characters. (White space characters include space, newline, and tab characters.) Some tokens are self delimiting and do not require white space characters. A string token is a sequence of zero or more printing characters delimited by a pair of quote characters (ASCII decimal value 34, hexadecimal value 0x22). An empty string is represented by two adjacent quotes. (Note: an apostrophe is not a quote.) A quote inside a string is represented by the backslash immediately followed by a quote. A backslash inside a string is represented by two adjacent backslashes. Strings are commonly used as tag pair values (see below). Non-printing characters like newline and tab are not permitted inside of strings. A string token is terminated by its closing quote. Currently, a string is limited to a maximum of 255 characters of data. An integer token is a sequence of one or more decimal digit characters. It is a special case of the more general "symbol" token class described below. Integer tokens are used to help represent move number indications (see below). An integer token is terminated just prior to the first non-symbol character following the integer digit sequence. A period character (".") is a token by itself. It is used for move number indications (see below). It is self terminating. An asterisk character ("*") is a token by itself. It is used as one of the possible game termination markers (see below); it indicates an incomplete game or a game with an unknown or otherwise unavailable result. It is self terminating. The left and right bracket characters ("[" and "]") are tokens. They are used to delimit tag pairs (see below). Both are self terminating. The left and right parenthesis characters ("(" and ")") are tokens. They are used to delimit Recursive Annotation Variations (see below). Both are self terminating. The left and right angle bracket characters ("<" and ">") are tokens. They are reserved for future expansion. Both are self terminating. A Numeric Annotation Glyph ("NAG", see below) is a token; it is composed of a dollar sign character ("$") immediately followed by one or more digit characters. It is terminated just prior to the first non-digit character following the digit sequence. A symbol token starts with a letter or digit character and is immediately followed by a sequence of zero or more symbol continuation characters. These continuation characters are letter characters ("A-Za-z"), digit characters ("0-9"), the underscore ("_"), the plus sign ("+"), the octothorpe sign ("#"), the equal sign ("="), the colon (":"), and the hyphen ("-"). Symbols are used for a variety of purposes. All characters in a symbol are significant. A symbol token is terminated just prior to the first non-symbol character following the symbol character sequence. Currently, a symbol is limited to a maximum of 255 characters in length. 8: Parsing games A PGN database file is a sequential collection of zero or more PGN games. An empty file is a valid, although somewhat uninformative, PGN database. A PGN game is composed of two sections. The first is the tag pair section and the second is the movetext section. The tag pair section provides information that identifies the game by defining the values associated with a set of standard parameters. The movetext section gives the usually enumerated and possibly annotated moves of the game along with the concluding game termination marker. The chess moves themselves are represented using SAN (Standard Algebraic Notation), also described later in this document. 8.1: Tag pair section The tag pair section is composed of a series of zero or more tag pairs. A tag pair is composed of four consecutive tokens: a left bracket token, a symbol token, a string token, and a right bracket token. The symbol token is the tag name and the string token is the tag value associated with the tag name. (There is a standard set of tag names and semantics described below.) The same tag name should not appear more than once in a tag pair section. A further restriction on tag names is that they are composed exclusively of letters, digits, and the underscore character. This is done to facilitate mapping of tag names into key and attribute names for use with general purpose database programs. For PGN import format, there may be zero or more white space characters between any adjacent pair of tokens in a tag pair. For PGN export format, there are no white space characters between the left bracket and the tag name, there are no white space characters between the tag value and the right bracket, and there is a single space character between the tag name and the tag value. Tag names, like all symbols, are case sensitive. All tag names used for archival storage begin with an upper case letter. PGN import format may have multiple tag pairs on the same line and may even have a tag pair spanning more than a single line. Export format requires each tag pair to appear left justified on a line by itself; a single empty line follows the last tag pair. Some tag values may be composed of a sequence of items. For example, a consultation game may have more than one player for a given side. When this occurs, the single character ":" (colon) appears between adjacent items. Because of this use as an internal separator in strings, the colon should not otherwise appear in a string. The tag pair format is designed for expansion; initially only strings are allowed as tag pair values. Tag value formats associated with the STR (Seven Tag Roster, see below) will not change; they will always be string values. However, there are long term plans to allow general list structures as tag values for non-STR tag pairs. Use of these expanded tag values will likely be restricted to special research programs. In all events, the top level structure of a tag pair remains the same: left bracket, tag name, tag value, and right bracket. 8.1.1: Seven Tag Roster There is a set of tags defined for mandatory use for archival storage of PGN data. This is the STR (Seven Tag Roster). The interpretation of these tags is fixed as is the order in which they appear. Although the definition and use of additional tag names and semantics is permitted and encouraged when needed, the STR is the common ground that all programs should follow for public data interchange. For import format, the order of tag pairs is not important. For export format, the STR tag pairs appear before any other tag pairs. (The STR tag pairs must also appear in order; this order is described below). Also for export format, any additional tag pairs appear in ASCII order by tag name. The seven tag names of the STR are (in order): 1) Event (the name of the tournament or match event) 2) Site (the location of the event) 3) Date (the starting date of the game) 4) Round (the playing round ordinal of the game) 5) White (the player of the white pieces) 6) Black (the player of the black pieces) 7) Result (the result of the game) A set of supplemental tag names is given later in this document. For PGN export format, a single blank line appears after the last of the tag pairs to conclude the tag pair section. This helps simple scanning programs to quickly determine the end of the tag pair section and the beginning of the movetext section. 8.1.1.1: The Event tag The Event tag value should be reasonably descriptive. Abbreviations are to be avoided unless absolutely necessary. A consistent event naming should be used to help facilitate database scanning. If the name of the event is unknown, a single question mark should appear as the tag value. Examples: [Event "FIDE World Championship"] [Event "Moscow City Championship"] [Event "ACM North American Computer Championship"] [Event "Casual Game"] 8.1.1.2: The Site tag The Site tag value should include city and region names along with a standard name for the country. The use of the IOC (International Olympic Committee) three letter names is suggested for those countries where such codes are available. If the site of the event is unknown, a single question mark should appear as the tag value. A comma may be used to separate a city from a region. No comma is needed to separate a city or region from the IOC country code. A later section of this document gives a list of three letter nation codes along with a few additions for "locations" not covered by the IOC. Examples: [Site "New York City, NY USA"] [Site "St. Petersburg RUS"] [Site "Riga LAT"] 8.1.1.3: The Date tag The Date tag value gives the starting date for the game. (Note: this is not necessarily the same as the starting date for the event.) The date is given with respect to the local time of the site given in the Event tag. The Date tag value field always uses a standard ten character format: "YYYY.MM.DD". The first four characters are digits that give the year, the next character is a period, the next two characters are digits that give the month, the next character is a period, and the final two characters are digits that give the day of the month. If the any of the digit fields are not known, then question marks are used in place of the digits. Examples: [Date "1992.08.31"] [Date "1993.??.??"] [Date "2001.01.01"] 8.1.1.4: The Round tag The Round tag value gives the playing round for the game. In a match competition, this value is the number of the game played. If the use of a round number is inappropriate, then the field should be a single hyphen character. If the round is unknown, a single question mark should appear as the tag value. Some organizers employ unusual round designations and have multipart playing rounds and sometimes even have conditional rounds. In these cases, a multipart round identifier can be made from a sequence of integer round numbers separated by periods. The leftmost integer represents the most significant round and succeeding integers represent round numbers in descending hierarchical order. Examples: [Round "1"] [Round "3.1"] [Round "4.1.2"] 8.1.1.5: The White tag The White tag value is the name of the player or players of the white pieces. The names are given as they would appear in a telephone directory. The family or last name appears first. If a first name or first initial is available, it is separated from the family name by a comma and a space. Finally, one or more middle initials may appear. (Wherever a comma appears, the very next character should be a space. Wherever an initial appears, the very next character should be a period.) If the name is unknown, a single question mark should appear as the tag value. The intent is to allow meaningful ASCII sorting of the tag value that is independent of regional name formation customs. If more than one person is playing the white pieces, the names are listed in alphabetical order and are separated by the colon character between adjacent entries. A player who is also a computer program should have appropriate version information listed after the name of the program. The format used in the FIDE Rating Lists is appropriate for use for player name tags. Examples: [White "Tal, Mikhail N."] [White "van der Wiel, Johan"] [White "Acme Pawngrabber v.3.2"] [White "Fine, R."] 8.1.1.6: The Black tag The Black tag value is the name of the player or players of the black pieces. The names are given here as they are for the White tag value. Examples: [Black "Lasker, Emmanuel"] [Black "Smyslov, Vasily V."] [Black "Smith, John Q.:Woodpusher 2000"] [Black "Morphy"] 8.1.1.7: The Result tag The Result field value is the result of the game. It is always exactly the same as the game termination marker that concludes the associated movetext. It is always one of four possible values: "1-0" (White wins), "0-1" (Black wins), "1/2-1/2" (drawn game), and "*" (game still in progress, game abandoned, or result otherwise unknown). Note that the digit zero is used in both of the first two cases; not the letter "O". All possible examples: [Result "0-1"] [Result "1-0"] [Result "1/2-1/2"] [Result "*"] 8.2: Movetext section The movetext section is composed of chess moves, move number indications, optional annotations, and a single concluding game termination marker. Because illegal moves are not real chess moves, they are not permitted in PGN movetext. They may appear in commentary, however. One would hope that illegal moves are relatively rare in games worthy of recording. 8.2.1: Movetext line justification In PGN import format, tokens in the movetext do not require any specific line justification. In PGN export format, tokens in the movetext are placed left justified on successive text lines each of which has less than 80 printing characters. As many tokens as possible are placed on a line with the remainder appearing on successive lines. A single space character appears between any two adjacent symbol tokens on the same line in the movetext. As with the tag pair section, a single empty line follows the last line of data to conclude the movetext section. Neither the first or the last character on an export format PGN line is a space. (This may change in the case of commentary; this area is currently under development.) 8.2.2: Movetext move number indications A move number indication is composed of one or more adjacent digits (an integer token) followed by zero or more periods. The integer portion of the indication gives the move number of the immediately following white move (if present) and also the immediately following black move (if present). 8.2.2.1: Import format move number indications PGN import format does not require move number indications. It does not prohibit superfluous move number indications anywhere in the movetext as long as the move numbers are correct. PGN import format move number indications may have zero or more period characters following the digit sequence that gives the move number; one or more white space characters may appear between the digit sequence and the period(s). 8.2.2.2: Export format move number indications There are two export format move number indication formats, one for use appearing immediately before a white move element and one for use appearing immediately before a black move element. A white move number indication is formed from the integer giving the fullmove number with a single period character appended. A black move number indication is formed from the integer giving the fullmove number with three period characters appended. All white move elements have a preceding move number indication. A black move element has a preceding move number indication only in two cases: first, if there is intervening annotation or commentary between the black move and the previous white move; and second, if there is no previous white move in the special case where a game starts from a position where Black is the active player. There are no other cases where move number indications appear in PGN export format. 8.2.3: Movetext SAN (Standard Algebraic Notation) SAN (Standard Algebraic Notation) is a representation standard for chess moves using the ASCII Latin alphabet. Examples of SAN recorded games are found throughout most modern chess publications. SAN as presented in this document uses English language single character abbreviations for chess pieces, although this is easily changed in the source. English is chosen over other languages because it appears to be the most widely recognized. An alternative to SAN is FAN (Figurine Algebraic Notation). FAN uses miniature piece icons instead of single letter piece abbreviations. The two notations are otherwise identical. 8.2.3.1: Square identification SAN identifies each of the sixty four squares on the chessboard with a unique two character name. The first character of a square identifier is the file of the square; a file is a column of eight squares designated by a single lower case letter from "a" (leftmost or queenside) up to and including "h" (rightmost or kingside). The second character of a square identifier is the rank of the square; a rank is a row of eight squares designated by a single digit from "1" (bottom side [White's first rank]) up to and including "8" (top side [Black's first rank]). The initial squares of some pieces are: white queen rook at a1, white king at e1, black queen knight pawn at b7, and black king rook at h8. 8.2.3.2: Piece identification SAN identifies each piece by a single upper case letter. The standard English values: pawn = "P", knight = "N", bishop = "B", rook = "R", queen = "Q", and king = "K". The letter code for a pawn is not used for SAN moves in PGN export format movetext. However, some PGN import software disambiguation code may allow for the appearance of pawn letter codes. Also, pawn and other piece letter codes are needed for use in some tag pair and annotation constructs. It is admittedly a bit chauvinistic to select English piece letters over those from other languages. There is a slight justification in that English is a de facto universal second language among most chessplayers and program users. It is probably the best that can be done for now. A later section of this document gives alternative piece letters, but these should be used only for local presentation software and not for archival storage or for dynamic interchange among programs. 8.2.3.3: Basic SAN move construction A basic SAN move is given by listing the moving piece letter (omitted for pawns) followed by the destination square. Capture moves are denoted by the lower case letter "x" immediately prior to the destination square; pawn captures include the file letter of the originating square of the capturing pawn immediately prior to the "x" character. SAN kingside castling is indicated by the sequence "O-O"; queenside castling is indicated by the sequence "O-O-O". Note that the upper case letter "O" is used, not the digit zero. The use of a zero character is not only incompatible with traditional text practices, but it can also confuse parsing algorithms which also have to understand about move numbers and game termination markers. Also note that the use of the letter "O" is consistent with the practice of having all chess move symbols start with a letter; also, it follows the convention that all non-pwn move symbols start with an upper case letter. En passant captures do not have any special notation; they are formed as if the captured pawn were on the capturing pawn's destination square. Pawn promotions are denoted by the equal sign "=" immediately following the destination square with a promoted piece letter (indicating one of knight, bishop, rook, or queen) immediately following the equal sign. As above, the piece letter is in upper case. 8.2.3.4: Disambiguation In the case of ambiguities (multiple pieces of the same type moving to the same square), the first appropriate disambiguating step of the three following steps is taken: First, if the moving pieces can be distinguished by their originating files, the originating file letter of the moving piece is inserted immediately after the moving piece letter. Second (when the first step fails), if the moving pieces can be distinguished by their originating ranks, the originating rank digit of the moving piece is inserted immediately after the moving piece letter. Third (when both the first and the second steps fail), the two character square coordinate of the originating square of the moving piece is inserted immediately after the moving piece letter. Note that the above disambiguation is needed only to distinguish among moves of the same piece type to the same square; it is not used to distinguish among attacks of the same piece type to the same square. An example of this would be a position with two white knights, one on square c3 and one on square g1 and a vacant square e2 with White to move. Both knights attack square e2, and if both could legally move there, then a file disambiguation is needed; the (nonchecking) knight moves would be "Nce2" and "Nge2". However, if the white king were at square e1 and a black bishop were at square b4 with a vacant square d2 (thus an absolute pin of the white knight at square c3), then only one white knight (the one at square g1) could move to square e2: "Ne2". 8.2.3.5: Check and checkmate indication characters If the move is a checking move, the plus sign "+" is appended as a suffix to the basic SAN move notation; if the move is a checkmating move, the octothorpe sign "#" is appended instead. Neither the appearance nor the absence of either a check or checkmating indicator is used for disambiguation purposes. This means that if two (or more) pieces of the same type can move to the same square the differences in checking status of the moves does not allieviate the need for the standard rank and file disabiguation described above. (Note that a difference in checking status for the above may occur only in the case of a discovered check.) Neither the checking or checkmating indicators are considered annotation as they do not communicate subjective information. Therefore, they are qualitatively different from move suffix annotations like "!" and "?". Subjective move annotations are handled using Numeric Annota